MolP-PC: a multi-view fusion and multi-task learning framework for drug ADMET property prediction
-
Abstract
The accurate prediction of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties represents a crucial step in early drug development for reducing failure risk. Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks. This research proposes molecular properties prediction with parallel-view and collaborative learning (MolP-PC), a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints (MFs), 2D molecular graphs, and 3D geometric representations, incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions. Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks, with its multi-task learning (MTL) mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks. Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization. A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life (T0.5) and clearance (CL), indicating its practical utility in drug modeling. However, the model exhibits a tendency to underestimate volume of distribution (VD), indicating potential for improvement in analyzing compounds with high tissue distribution. This study presents an efficient and interpretable approach for ADMET property prediction, establishing a novel framework for molecular optimization and risk assessment in drug development.
-
-