[1] Kandpal RP, Saviola B, Felton J. The era of'omics unlimited[J]. Biotechniques, 2009, 46(5):351.
[2] Cavalli-Sforza LL. The human genome diversity project:past, present and future[J]. Nat Rev Genet, 2005, 6(4):333-340.
[3] Wang L. Pharmacogenomics:a systems approach[J]. Wiley Interdiscip Rev Syst Biol Med, 2010, 2(1):3-22.
[4] D'Alessandro A and Zolla L. Pharmacoproteomics:a chess game on a protein field[J]. Drug Discov Today, 2010, 15(23-24):1015-1023.
[5] Beijer HJ, de Blaey CJ. Hospitalisations caused by adverse drug reactions (ADR):a meta-analysis of observational studies[J]. Pharm World Sci, 2002, 24(2):46-54.
[6] Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells[J]. Nature, 2012, 483(7391):570-575.
[7] Visscher H, Ross CJ, Rassekh SR, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children[J]. J Clin Oncol, 2012, 30(13):1422-1428.
[8] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
[9] Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleogenomics:large-scale sequencing of mammoth DNA[J]. Science, 2006, 311(5759):392-394.
[10] Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. Proc Natl Acad Sci USA, 2005, 102(31):11070-11075.
[11] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesityassociated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031.
[12] Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464):541-546.
[13] Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach[J]. Gut, 2006, 55(2):205-211.
[14] Siggers RH, Siggers J, Boye M, et al. Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs[J]. J Nutr, 2008, 138(8):1437-1444.
[15] Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis[J]. Environ Microbiol, 2008, 10(3):789-798.
[16] Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. PLoS One, 2010, 5(2):e9085.
[17] Laird PW. Principles and challenges of genome-wide DNA methylation analysis[J]. Nat Rev Genet, 2010, 11(3):191-203.
[18] Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532):1074-1080.
[19] Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes:the H3 barcode hypothesis [J]. Proc Natl Acad Sci USA, 2006, 103(17):6428-6435.
[20] Grewal SI, Elgin SC. Transcription and RNA interference in the formation of heterochromatin[J]. Nature, 2007, 447(7143):399-406.
[21] Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation[J]. Nature, 2007, 447(7143):413-417.
[22] Sandoval J, Esteller M. Cancer epigenomics:beyond genomics[J]. Curr Opin Genet Dev, 2012, 22(1):50-55.
[23] Bradbury J. Human epigenome project-up and running[J]. PLoS Biol, 2003, 1(3):e82.
[24] Kulis M, Esteller M. DNA methylation and cancer[J]. Adv Genet, 2010, 70:27-56.
[25] Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature, 2000, 403(6765):41-45.
[26] Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports:a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ[J]. Nucleic Acids Res, 1992, 20(7):1679-1684.
[27] Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression[J]. Science, 1995, 270(5235):484-487.
[28] Brenner S, Johnson M, Bridgham J, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays[J]. Nat Biotechnol, 2000, 18(6):630-634.
[29] Morin R, Bainbridge M, Fejes A, et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing[J]. Biotechniques, 2008, 45(1):81-94.
[30] Chu Y, Corey DR. RNA sequencing:platform selection, experimental design, and data interpretation[J]. Nucleic Acid Ther, 2012, 22(4):271-274.
[31] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63.
[32] Sutherland GT, Janitz M, Kril JJ. Understanding the pathogenesis of Alzheimer's disease:will RNA-Seq realize the promise of transcriptomics?[J]. J Neurochem, 2011, 116(6):937-946.
[33] Fehlbaum-Beurdeley P, Sol O, Desire L, et al. Validation of AclarusDx, a blood-based transcriptomic signature for the diagnosis of Alzheimer's disease[J]. J Alzheimers Dis, 2012, 32(1):169-181.
[34] Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology[J]. Nature, 2011, 474(7351):380-384.
[35] Heidecker B, Hare JM. The use of transcriptomic biomarkers for personalized medicine[J]. Heart Fail Rev, 2007, 12(1):1-11.
[36] Cui Y, Paules RS. Use of transcriptomics in understanding mechanisms of drug-induced toxicity[J]. Pharmacogenomics, 2010, 11(4):573-585.
[37] Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447):67-73.
[38] Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups[J]. Nature, 2012, 486(7403):346-352.
[39] Labb RM, Irimia M, Currie KW, et al. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals[J]. Stem Cells, 2012, 30(8):1734-1745.
[40] Wilkins MR, Pasquali C, Appel RD, et al. From proteins to proteomes:large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J]. Biotechnology, 1996, 14(1):61-65.
[41] Anderson NL, Anderson NG. Proteome and proteomics:New technologies, new concepts, and new words[J]. Electrophoresis, 1998, 19(11):1853-1861.
[42] Blackstock WP, Weir MP. Proteomics:quantitative and physical mapping of cellular proteins[J]. Trends Biotechnol, 1999, 17(3):121-127.
[43] Marouga R, David S, Hawkins E. The development of the DIGE system:2D fluorescence difference gel analysis technology[J]. Anal Bioanal Chem, 2005, 382(3):669-678.
[44] Tannu NS, Hemby SE. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling[J]. Nat Protoc, 2006, 1(4):1732-1742.
[45] Bennett KL, Funk M, Tschernutter M, et al. Proteomic analysis of human cataract aqueous humour:Comparison of one-dimensional gel LCMS with two-dimensional LCMS of unlabelled and iTRAQ(R)-labelled specimens[J]. J Proteomics, 2011, 74(2):151-166.
[46] Irar S, Brini F, Masmoudi K, et al. Combination of 2DE and LC for plant proteomics analysis[J]. Methods Mol Biol, 2014, 1072:131-140.
[47] Stalmach A, Albalat A, Mullen W, et al. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications[J]. Electrophoresis, 2013, 34(11):1452-1464.
[48] Asara J, Christofk H, Freimark L, et al. A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen[J]. Proteomics, 2008, 8(5):994-999.
[49] Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags[J]. Nat Biotechnol, 1999, 17(10):994-999.
[50] Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies[J]. J Exp Bot, 2006, 57(7):1501-1508.
[51] Schwanhusser B, Gossen M, Dittmar G, et al. Global analysis of cellular protein translation by pulsed SILAC[J]. Proteomics, 2009, 9(1):205-209.
[52] Chen J, Khne T, Rcken C, et al. Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins[J]. J Proteome Res, 2004, 3(5):1009-1016.
[53] Ping S, Wang S, Zhang J, et al. Effect of all-trans-retinoic acid on mRNA binding protein p62 in human gastric cancer cells[J]. Int J Biochem Cell Biol, 2005, 37(3):616-627.
[54] Poon TC, Sung JJ, Chow SM, et al. Diagnosis of gastric cancer by serum proteomic fingerprinting[J]. Gastroenterology, 2006, 130(6):1858-1864.
[55] Mu AK, Chan YS, Kang SS, et al. Detection of host-specific immunogenic proteins in the saliva of patients with oral squamous cell carcinoma[J]. J Immunoassay Immunochem, 2014, 35(2):183-193.
[56] Kubota D, Yoshida A, Kikuta K, et al. Proteomic approach to gastrointestinal stromal tumor identified prognostic biomarkers[J]. J Proteomics Bioinform, 2014, 7(1):10-16.
[57] Lim YP. Mining the tumor phosphoproteome for cancer markers[J]. Clin Cancer Res, 2005, 11(9):3163-3169.
[58] Yu LR, Issaq HJ, Veenstra TD. Phosphoproteomics for the discovery of kinases as cancer biomarkers and drug targets[J]. Proteomics Clin Appl, 2007, 1(9):1042-1057.
[59] Bolger SJ, Hurtado PA, Hoffert JD, et al. Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells[J]. Am J Physiol Cell Physiol, 2012, 303(10):1006-1020.
[60] Rinschen MM, Yu MJ, Wang G, et al. Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells[J]. Proc Natl Acad Sci USA, 2010, 107(8):3882-3887.
[61] Zhao B, Knepper MA, Chou CL, et al. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination[J]. Am J Physiol Cell Physiol, 2012, 302(1):27-45.
[62] Feric M, Zhao B, Hoffert JD, et al. Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule[J]. Am J Physiol Cell Physiol, 2011, 300(4):755-770.
[63] Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes[J]. J Am Soc Nephrol, 2009, 20(2):363-379.
[64] Hoffert JD, Pisitkun T, Wang G, et al. Quantitative phosphoproteomics of vasopressin-sensitive renal cells:regulation of aquaporin-2 phosphorylation at two sites[J]. Proc Natl Acad Sci USA, 2006, 103(18):7159-7164.
[65] Tissot B, North SJ, Ceroni A, et al. Glycoproteomics:past, present and future[J]. FEBS Lett, 2009, 583(11):1728-1735.
[66] Hagglund P, Bunkenborg J, Elortza F, et al. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation[J]. J Proteome Res, 2004, 3(3):556-566.
[67] Yang Z, Hancock WS. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column[J]. J Chromatogr A, 2004, 1053(1-2):79-88.
[68] Hirabayashi J, Hayama K, Kaji H, et al. Affinity capturing and gene assignment of soluble glycoproteins produced by the nematode Caenorhabditis elegans[J]. J Biochem, 2002, 132(1):103-114.
[69] Madera M, Mechref Y, Klouckova I, et al. Semiautomated high-sensitivity profiling of human blood serum glycoproteins through lectin preconcentration and multidimensional chromatography/tandem mass spectrometry[J]. J Proteome Res, 2006, 5(9):2348-2363.
[70] Kameyama A, Kikuchi N, Nakaya S, et al. A strategy for identification of oligosaccharide structures using observational multistage mass spectral library[J]. Anal Chem, 2005, 77(15):4719-4725.
[71] Yen TY, Haste N, Timpe LC, et al. Using a cell line breast cancer progression system to identify biomarker candidates[J]. J Proteomics, 2014, 96:173-183.
[72] Ahn JM, Sung HJ, Yoon YH, et al. Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer[J]. Mol Cell Proteomics, 2014, 13(1):30-48.
[73] Bones J, Byrne JC, O'Donoghue N, et al. Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms[J]. J Proteome Res, 2011, 10(3):1246-1265.
[74] Wu J, Xie X, Liu Y, et al. Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS[J]. J Proteome Res, 2012, 11(9):4541-4552.
[75] Ito K, Kuno A, Ikehara Y, et al. LecT-Hepa, a glyco-marker derived from multiple lectins, as a predictor of liver fibrosis in chronic hepatitis C patients[J]. Hepatology, 2012, 56(4):1448-1456.
[76] Butterfield DA, Owen JB. Lectin-affinity chromatography brain glycoproteomics and Alzheimer disease:insights into protein alterations consistent with the pathology and progression of this dementing disorder[J]. Proteomics Clin Appl, 2011, 5(1-2):50-56.
[77] Strassberger V, Fugmann T, Neri D, et al. Chemical proteomic and bioinformatic strategies for the identification and quantification of vascular antigens in cancer[J]. J Proteomics, 2010, 73(10):1954-1973.
[78] Adam GC, Sorensen EJ, Cravatt BF. Chemical strategies for functional proteomics[J]. Mol Cell Proteomics, 2002, 1(10):781-790.
[79] Terstappen GC, Schlupen C, Raggiaschi R, et al. Target deconvolution strategies in drug discovery[J]. Nat Rev Drug Discov, 2007, 6(11):891-903.
[80] Lomenick B, Olsen RW, Huang J. Identification of direct protein targets of small molecules[J]. ACS ChemBiol, 2010, 6(1):34-46.
[81] Sato S-i, Murata A, Shirakawa T, et al. Biochemical target isolation for novices:affinity-based strategies[J]. Chem Biol, 2010, 17(6):616-623.
[82] Lomenick B, Hao R, Jonai N, et al. Target identification using drug affinity responsive target stability (DARTS)[J]. Proc Natl Acad Sci USA, 2009, 106(51):21984-21989.
[83] Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips[J]. Proc Natl Acad Sci USA, 2004, 101(47):16594-16599.
[84] Barabasi A-L, Oltvai ZN. Network biology:understanding the cell's functional organization[J]. Nat Rev Genet, 2004, 5(2):101-113.
[85] Greenbaum DC, Baruch A, Grainger M, et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite[J]. Science, 2002, 298(5600):2002-2006.
[86] Zhang XW, Yan XJ, Zhou ZR, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML[J]. Science, 2010, 328(5975):240-243.
[87] Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology[J]. Mol Syst Biol, 2006, 2:52
[88] Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics[J]. J Proteome Res, 2007, 6(2):469-479.
[89] Smith CA, Want EJ, O'Maille G, et al. XCMS:Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[J]. Anal Chem, 2006, 78(3):779-787.
[90] Tautenhahn R, Patti GJ, Rinehart D, et al. XCMS Online:a web-based platform to process untargeted metabolomic data[J]. Anal Chem, 2012, 84(11):5035-5039.
[91] Katajamaa M, Miettinen J, Oreič M. MZmine:toolbox for processing and visualization of mass spectrometry based molecular profile data[J]. Bioinformatics, 2006, 22(5):634-636.
[92] Lommen A. MetAlign:interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing[J]. Anal Chem, 2009, 81(8):3079-3086.
[93] Baran R, Kochi H, Saito N, et al. MathDAMP:a package for differential analysis of metabolite profiles[J]. BMC Bioinformatics, 2006, 7:530.
[94] Robertson DG. Metabonomics in toxicology:a review[J]. Toxicol Sci, 2005, 85(2):809-822.
[95] Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identification of novel biomarkers of myocardial ischemia[J]. Circulation, 2005, 112(25):3868-3875.
[96] Zhang A, Sun H, Yan G, et al. Metabolomics in diagnosis and biomarker discovery of colorectal cancer[J]. Cancer Lett, 2014, 345(1):17-20.
[97] Denkert C, Budczies J, Weichert W, et al. Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover[J]. Mol Cancer, 2008, 7(72):1476-4598.
[98] Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment[J]. Nature, 2006, 440(7087):1073-1077.
[99] Wang X, Yan SK, Dai WX, et al. A metabonomic approach to chemosensitivity prediction of cisplatin plus 5-fluorouracil in a human xenograft model of gastric cancer[J]. Int J Cancer, 2010, 127(12):2841-2850.
[100] Amacher DE. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity[J]. Toxicol Appl Pharmacol, 2010, 245(1):134-142.
[101] Klawitter J, Haschke M, Kahle C, et al. Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose[J]. Br J Clin Pharmacol, 2010, 70(2):241-251.
[102] Ichikawa W. Prediction of clinical outcome of fluoropyrimidine-based chemotherapy for gastric cancer patients, in terms of the 5-fluorouracil metabolic pathway[J]. Gastric Cancer, 2006, 9(3):145-155.
[103] Howells DW, Sena ES, O'Collins V, et al. Improving the efficiency of the development of drugs for stroke[J]. Int J Stroke, 2012, 7(5):371-377.
[104] Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:a bridge to lipidomics[J]. J Lipid Res, 2003, 44(6):1071-1079.
[105] Wenk MR. The emerging field of lipidomics[J]. Nat Rev Drug Discov, 2005, 4(7):594-610.
[106] Watson AD. Thematic review series:systems biology approaches to metabolic and cardiovascular disorders. Lipidomics:a global approach to lipid analysis in biological systems[J]. J Lipid Res, 2006, 47(10):2101-2111.
[107] Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8):911-917.
[108] Wenk MR. Lipidomics in drug and biomarker development[J]. Expert Opin Drug Discov, 2006, 1(7):723-736.
[109] Marechal E, Riou M, Kerboeuf D, et al. Membrane lipidomics for the discovery of new antiparasitic drug targets[J]. Trends Parasitol, 2011, 27(11):496-504.
[110] Adibhatla RM, Hatcher JF and Dempsey RJ. Lipids and lipidomics in brain injury and diseases[J]. Aaps J, 2006, 8(2):E314-321.
[111] Bilder RM, Sabb FW, Cannon TD, et al. Phenomics:the systematic study of phenotypes on a genome-wide scale[J]. Neuroscience, 2009, 164(1):30-42.
[112] Joy T, Hegele RA. Genetics of metabolic syndrome:is there a role for phenomics?[J]. Curr Atheroscler Rep, 2008, 10(3):201-208.
[113] Finkel E. With 'Phenomics', plant scientists hope to shift breeding into overdrive[J]. Science, 2009, 325(5939):380-381.
[114] Pizza M, Scarlato V, Masignani V, et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing[J]. Science, 2000, 287(5459):1816-1820.
[115] Bambini S, Rappuoli R. The use of genomics in microbial vaccine development[J]. Drug Discov Today, 2009, 14(5-6):252-260.
[116] He Y. Omics-based systems vaccinology for vaccine target identification[J]. Drug Develop Res, 2012, 73(8):559-568.
[117] Bulman A, Neagu M, Constantin C. Immunomics in skin cancer-improvement in diagnosis, Prognosis and Therapy Monitoring[J]. Curr Proteomics, 2013, 10(3):202.
[118] Haraguchi H. Metallomics as integrated biometal science[J]. J Anal At Spectrom, 2004, 19(1):5-14.
[119] Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis:metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics[J]. Analyst, 2005, 130(4):442-465.
[120] Chry CC, Gnther D, Cornelis R, et al. Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry:Application to selenium[J]. Electrophoresis, 2003, 24(19-20):3305-3313.
[121] Carmona A, Cloetens P, Devs G, et al. Nano-imaging of trace metals by synchrotron X-ray fluorescence into dopaminergic single cells and neurite-like processes[J]. J Anal At Spectrom, 2008, 23(8):1083-1088.
[122] Gonzlez-Fernndez M, Garca-Barrera T, Arias-Borrego A, et al. Metallomics integrated with proteomics in deciphering metal-related environmental issues[J]. Biochimie, 2009, 91(10):1311-1317.
[123] Sun X, Tsang C-N, Sun H. Identification and characterization of metallodrug binding proteins by (metallo) proteomics[J]. Metallomics, 2009, 1(1):25-31.
[124] Yan XD, Pan LY, Yuan Y, et al. Identification of platinumresistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines[J]. J Proteome Res, 2007, 6(2):772-780.
[125] Schooley K, Zhu P, Dower SK, et al. Regulation of nuclear translocation of nuclear factor-kappaB relA:evidence for complex dynamics at the single-cell level[J]. Biochem J, 2003, 369(Pt 2):331-339.
[126] Valet G. Cytomics as a new potential for drug discovery[J]. Drug Discov Today, 2006, 11(17):785-791.
[127] Jang YJ, Jeon OH, Kim DS. Saxatilin, a snake venom disintegrin, regulates platelet activation associated with human vascular endothelial cell migration and invasion[J]. J Vasc Res, 2007, 44(2):129-137.
[128] Shanks RH, Rizzieri DA, Flowers JL, et al. Preclinical evaluation of gemcitabine combination regimens for application in acute myeloid leukemia[J]. Clin Cancer Res, 2005, 11(11):4225-4233.
[129] Danku JM, Gumaelius L, Baxter I, et al. A high-throughput method for Saccharomyces cerevisiae (yeast) ionomics[J]. J Anal At Spectrom, 2009, 24(1):103-107.
[130] Young LW, Westcott ND, Attenkofer K, et al. A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy[J]. J Synchrotron Radiat, 2006, 13(4):304-313.
[131] Eide DJ, Clark S, Nair TM, et al. Characterization of the yeast ionome:a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae[J]. Genome Biol, 2005, 6(9):R77.
[132] Ziegler G, Terauchi A, Becker A, et al. Ionomic screening of field-grown soybean identifies mutants with altered seed elemental composition[J]. The Plant Genome, 2013, 6(2):1-9.
[133] Sanchez C, Lachaize C, Janody F, et al. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database[J]. Nucleic Acids Res, 1999, 27(1):89-94.
[134] Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. Cell, 1998, 92(4):573-585.
[135] Maglott D, Ostell J, Pruitt KD, et al. Entrez Gene:genecentered information at NCBI[J]. Nucleic Acids Res, 2007, 35(S1):D26-D31.
[136] Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al. Oncomine 3.0:genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles[J]. Neoplasia, 2007, 9(2):166-180.
[137] Gao Z, Li H, Zhang H, et al. PDTD:a web-accessible protein database for drug target identification[J]. BMC Bioinformatics, 2008, 9(104):1471-2105.
[138] Jayapal M, Melendez AJ. DNA microarray technology for target identification and validation[J]. Clin Exp Pharm Physiol, 2006, 33(5-6):496-503.
[139] Ricciarelli R, d'Abramo C, Massone S, et al. Microarray analysis in Alzheimer's disease and normal aging[J]. IUBMB life, 2004, 56(6):349-354.
[140] Grnblatt E, Mandel S, Maor G, et al. Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease using cDNA microarray:effect of Rapomorphine[J].J Neurochem, 2001, 78(1):1-12.
[141] Stam RW, den Boer ML, Meijerink JP, et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia[J]. Blood, 2003, 101(4):1270-1276.
[142] Fong D, Spizzo G, Gostner JM, et al. TROP2:a novel prognostic marker in squamous cell carcinoma of the oral cavity[J]. Mod Pathol, 2007, 21(2):186-191.
[143] Keskin O, Gursoy A, Ma B, et al. Towards drugs targeting multiple proteins in a systems biology approach[J]. Curr Top Med Chem, 2007, 7(10):943-951.
[144] Gresham V, McLeod HL. Genomics:Applications in mechanism elucidation[J]. Adv Drug Deliv Rev, 2009, 61(5):369-374.
[145] Attia SM, Ahmad SF, Zoheir KM, et al. Genotoxic evaluation of chloroacetonitrile in murine marrow cells and effects on DNA damage repair gene expressions[J]. Mutagenesis, 2014, 29(1):55-62.
[146] Wetmore BA, Merrick BA. Toxicoproteomics:proteomics applied to toxicology and pathology[J]. Toxicol Pathol, 2004, 32(6):619-642.
[147] Gresham V, McLeod HL. Genomics:applications in mechanism elucidation[J]. Adv Drug Deliv Rev, 2009, 61(5):369-374.
[148] Bouhifd M, Hartung T, Hogberg HT, et al. Review:toxicometabolomics[J]. J Appl Toxicol, 2013, 33(12):1365-1383.
[149] Nicholson JK, Everett JR, Lindon JC. Longitudinal pharmacometabonomics for predicting patient responses to therapy:drug metabolism, toxicity and efficacy[J]. Expert Opin Drug Metab Toxicol, 2012, 8(2):135-139.
[150] Soga T, Baran R, Suematsu M, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption[J]. J Bio Chem, 2006, 281(24):16768-16776.
[151] Giacomini KM, Krauss RM, Roden DM, et al. When good drugs go bad[J]. Nature, 2007, 446(7139):975-977.
[152] Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era:a complex systems approach to human pathobiology[J]. Mol Syst Biol, 2007, 3(124):10.
[153] Johnson JA. Advancing management of hypertension through pharmacogenomics[J]. Ann Med, 2012, 44(S1):S17-S22.
[154] Gupta S and Awasthi S. Pharmacogenomics of pediatric asthma[J]. Indian J Hum Genet, 2010, 16(3):111-118.
[155] Aslibekyan S, Straka RJ, Irvin MR, et al. Pharmacogenomics of high-density lipoprotein-cholesterol-raising therapies[J]. Expert Rev Cardiovasc Ther, 2013, 11(3):355-364.
[156] Ingle JN. Pharmacogenomics of endocrine therapy in breast cancer[J]. J Hum Genet, 2013, 58(6):306-312.
[157] Lee W, Lockhart AC, Kim RB, et al. Cancer pharmacogenomics:powerful tools in cancer chemotherapy and drug development[J]. The Oncologist, 2005, 10(2):104-111.
[158] Ferrari P. Pharmacogenomics:a new approach to individual therapy of hypertension?[J]. Curr Opin Nephrol Hypertens, 1998, 7(2):217-222.
[159] Hancox RJ, Sears MR, Taylor DR. Polymorphism of the beta2-adrenoceptor and the response to long-term beta2-agonist therapy in asthma[J]. Eur Respir J, 1998, 11(3):589-593.
[160] Holmes E, Nicholson JK, Tranter G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks[J]. Chem Res Toxicol, 2001, 14(2):182-191.
[161] Nicholson JK, Wilson ID, Lindon JC. Pharmacometabonomics as an effector for personalized medicine[J]. Pharmacogenomics, 2011, 12(1):103-111.
[162] van Wietmarschen HA, der Greef Jv, Schron Y, et al. Evaluation of symptom, clinical chemistry and metabolomics profiles during Rehmannia six formula (R6) treatment:An integrated and personalized data analysis approach[J]. J Ethnopharmacol, 2013, 150(3):851-859.
[163] Keun HC, Sidhu J, Pchejetski D, et al. Serum molecular signatures of weight change during early breast cancer chemotherapy[J]. Clin Canc Res, 2009, 15(21):6716-6723.
[164] Klayman DL. Qinghaosu (artemisinin):an antimalarial drug from China[J]. Science, 1985, 228(4703):1049-1055.
[165] Chen GQ, Shi XG, Tang W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL):I. As2O3 exerts dose-dependent dual effects on APL cells[J]. Blood, 1997, 89(9):3345-3353.
[166] Ma WH, Lu Y, Huang H, et al. Schisanwilsonins A-G and related anti-HBV lignans from the fruits of Schisandra wilsoniana[J]. Bioorg Med Chem Lett, 2009, 19(17):4958-4962.
[167] Ma X, Gang DR. In vitro production of huperzine A, a promising drug candidate for Alzheimer's disease[J]. Phytochemistry, 2008, 69(10):2022-2028.
[168] Qiu J. Traditional medicine:a culture in the balance[J]. Nature, 2007, 448(7150):126-128.
[169] Zhang YB, Wang J, Wang ZT, et al. DNA microarray for identification of the herb of Dendrobium species from Chinese medicinal formulations[J]. Planta Med, 2003, 69(12):1172-1174.
[170] Wang GL, Chen CB, Gao JM, et al. Investigation on the molecular mechanisms of anti-hepatocarcinoma herbs of traditional Chinese medicine by cell cycle microarray[J]. China J Chin Mater Med, 2005, 30(1):50-54.
[171] Zhang ZJ, Li P, Wang Z, et al. A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury[J]. Brain Res, 2006, 1123(1):188-195.
[172] Hara A, Iizuka N, Hamamoto Y, et al. Molecular dissection of a medicinal herb with anti-tumor activity by oligonucleotide microarray[J]. Life Sci, 2005, 77(9):991-1002.
[173] Yue QX, Cao ZW, Guan SH, et al. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network[J]. Mol Cell Proteomics, 2008, 7(5):949-961.
[174] Yue QX, Song XY, Ma C, et al. Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells[J]. Phytomedicine, 2010, 17(8-9):606-613.
[175] Wang X, Chen Y, Han QB, et al. Proteomic identification of molecular targets of gambogic acid:role of stathmin in hepatocellular carcinoma[J]. Proteomics, 2009, 9(2):242-253.
[176] Chen M, Su M, Zhao L, et al. Metabonomic study of aristolochic acid-induced nephrotoxicity in rats[J]. J Proteome Res, 2006, 5(4):995-1002.
[177] Li WX, Tang YP, Guo JM, et al. Comparative metabolomics analysis on hematopoietic functions ofherb pair Gui-Xiong by ultra-high-performance liquidchromatography coupled to quadrupole time-of-flight massspectrometry and pattern recognition approach[J]. J Chromatogr A, 2014, 1346:49-56.
[178] Li L, Wang J, Ren J, et al. Metabonomics analysis of the urine of rats with Qi deficiency and blood stasis syndrome based on NMR techniques[J]. Chin Sci Bull, 2007, 52(22):3068-3073.
[179] Wang X, Zhang A, Han Y, et al. Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease[J]. Mol Cell Proteomics, 2012, 11(8):370-380.
[180] Droste P, Miebach S, Niedenfhr S, et al. Visualizing multi-omics data in metabolic networks with the software Omix-a case study[J]. Biosystems, 2011, 105(2):154-161.
[181] Haoudi A, Bensmail H. Bioinformatics and data mining in proteomics[J]. Expert Rev Proteomics, 2006, 3(3):333-343.
[182] Wolstencroft K, Haines R, Fellows D, et al. The Taverna workflow suite:designing and executing workflows of Web Services on the desktop, web or in the cloud[J]. Nucleic Acids Res, 2013, 41(Web Server issue):W557-561.
[183] McIntyre RS, Cha DS, Jerrell JM, et al. Advancing biomarker research:utilizing 'Big Data' approaches for the characterization and prevention of bipolar disorder[J]. BipolarDisord, 2014, 16(5):531-547.
[184] Hassani S, Martens H, Qannari EM, et al. Analysis of-omics data:Graphical interpretation- and validation tools in multiblock methods[J]. Chemometr Intell Lab Syst, 2010, 104(1):140-153.
[185] Zhang Z, Chen J, Guo F, et al. A high-temporal resolution technology for dynamic proteomic analysis based on 35S labeling[J]. PLoS One, 2008, 3(8):e2991.
[186] Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes[J]. Cell, 2012, 148(6):1293-1307.
[187] Nakanishi Y, Fukuda S, Chikayama E, et al. Dynamic omics approach identifies nutrition-mediated microbial interactions[J]. J Proteome Res, 2010, 10(2):824-836.