Volume 13 Issue 9
Sep.  2015
Turn off MathJax
Article Contents

Citation:

Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals

  • Corresponding author:
  • Received Date: 26-May.-2015
    Fund Project: This work was supported by grant from the National Center for Complementary & Integrative Health (Nos. R15AT007013 and R15AT008733).
  • Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer.
  • 加载中
  • [1]

    Li B, Gao MH, Chu XM, et al. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo[J]. Eur J Pharmacol, 2015, 749:107-114.
    [2]

    Society A. C. American Cancer Society:Cancer Facts and Figures 2015[M]. American Cancer Society Atlanta, GA. 2015.
    [3]

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1):5-29.
    [4]

    Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals[J]. Am J Clin Nutr, 2003, 78(3):517S-520S.
    [5]

    Surh YJ. Cancer chemoprevention with dietary phytochemicals[J]. Nat Rev Cancer, 2003, 3(10):768-780.
    [6]

    Basnet P, Skalko-Basnet N. Curcumin:an anti-inflammatory molecule from a curry spice on the path to cancer treatment[J]. Molecules, 2011, 16(6):4567-4598.
    [7]

    Khushnud T, Mousa SA. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer[J]. Mol Biotechnol, 2013, 55(1):78-86.
    [8]

    Vidya Priyadarsini R, Nagini S. Cancer chemoprevention by dietary phytochemicals:promises and pitfalls[J]. Curr Pharm Biotechnol, 2012, 13(1):125-136.
    [9]

    Wang S, Zhang J, Chen M, et al. Delivering flavonoids into solid tumors using nanotechnologies[J]. Expert Opin Drug Deliv, 2013, 10(10):1411-1428.
    [10]

    Alexis F, Pridgen EM, Langer R, et al. Nanoparticle technologies for cancer therapy[J]. Handb Exp Pharmacol, 2010, 197:55-86.
    [11]

    Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system[J]. J Biomed Nanotech, 2013, 9(5):741-750.
    [12]

    Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals[J]. J Nutr Biochem, 2014, 25(4):363-376.
    [13]

    Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages:mechanism of action, preparation of liposomes and applications[J]. J Immunol Methods, 1994, 174(1):83-93.
    [14]

    Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs[J]. Annu Rev Med, 2012, 63:185-198.
    [15]

    Mohanraj V, Chen Y. Nanoparticles-a review[J]. Trop J Pharm Res, 2007, 5(1):561-573.
    [16]

    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers[J]. Nat Rev Drug discov, 2005, 4(2):145-160.
    [17]

    Torchilin VP. Multifunctional nanocarriers[J]. Adv Drug Del Rev, 2012, 64:302-315.
    [18]

    Nair HB, Sung B, Yadav VR, et al. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer[J]. Biochem Pharmacol, 2010, 80(12):1833-1843.
    [19]

    Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells[J]. Mol Pharm, 2009, 6(3):928-939.
    [20]

    Pool H, Mendoza S, Xiao H, et al. Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems:impact of physical form on quercetin bioaccessibility[J]. Food Funct, 2013, 4(1):162-174.
    [21]

    Davidov-Pardo G, Mcclements DJ. Nutraceutical delivery systems:Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification[J]. Food Chem, 2015, 167:205-212.
    [22]

    Argenta DF, De Mattos CB, Misturini FD, et al. Factorial design applied to the optimization of lipid composition of topical antiherpetic nanoemulsions containing isoflavone genistein[J]. Int J Nanomed, 2014, 9(1):4737-4747.
    [23]

    Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review[J]. J Controlled Release, 2008, 128(3):185-199.
    [24]

    Wissing S, Kayser O, Mller R. Solid lipid nanoparticles for parenteral drug delivery[J]. Adv Drug Del Rev, 2004, 56(9):1257-1272.
    [25]

    Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles:a review[J]. Sci Rev Chem Commun, 2012, 2(1):80-102.
    [26]

    Mu ller RH, Ma der K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art[J]. Eur J Pharm Biopharm, 2000, 50(1):161-177.
    [27]

    Hou D, Xie C, Huang K, et al. The production and characteristics of solid lipid nanoparticles (SLNs)[J]. Biomaterials, 2003, 24(10):1781-1785.
    [28]

    Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs):development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?[J]. Eur J Pharm Sci, 2012, 47(1):139-151.
    [29]

    Fang JY, Fang CL, Liu CH, et al. Lipid nanoparticles as vehicles for topical psoralen delivery:solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC)[J]. Eur J Pharm Biopharm, 2008, 70(2):633-640.
    [30]

    Torchilin VP. Micellar nanocarriers:pharmaceutical perspectives[J]. Pharm Res, 2007, 24(1):1-16.
    [31]

    Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies[J]. Adv Drug Del Rev, 2008, 60(8):899-914.
    [32]

    Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery:strategies and underlying principles[J]. Nanomedicine, 2010, 5(3):485-505.
    [33]

    Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles[J]. J Biomater Sci Polym Ed, 2006, 17(3):247-289.
    [34]

    Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery[J]. Biomaterials, 2006, 27(15):3031-3037.
    [35]

    Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines[J]. J Nanobiotechnol, 2011, 9(55):1-11.
    [36]

    Khalil NM, Do Nascimento TCF, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats[J]. Colloids Surf B Biointerfaces, 2013, 101:353-360.
    [37]

    Sanna V, Roggio AM, Pala N, et al. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol[J]. Int J Biol Macromol, 2015, 72:531-536.
    [38]

    Pool H, Quintanar D, De Dios Figueroa J, et al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles[J]. J Nanomater, 2012, 2012:86.
    [39]

    Zhang J, Nie S, Wang S. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages[J]. J Agric Food Chem, 2013, 61(38):9200-9209.
    [40]

    Jankun J, Selman SH, Swiercz R, et al. Why drinking green tea could prevent cancer.[J]. Nature, 1997, 387(6633):561.
    [41]

    Du GJ, Zhang Z, Wen XD, et al. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea[J]. Nutrients, 2012, 4(11):1679-1691.
    [42]

    Cao Y, Cao R. Angiogenesis inhibited by drinking tea[J]. Nature, 1999, 398(6726):381.
    [43]

    Lambert JD, Yang CS. Mechanisms of cancer prevention by tea constituents[J]. J Nutr, 2003, 133(10):3262S-3267S.
    [44]

    De Pace RC, Liu X, Sun M, et al. Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells[J]. J Liposome Res, 2013, 23(3):187-196.
    [45]

    Hong J, Lu H, Meng X, et al. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells[J]. Cancer Res, 2002, 62(24):7241-7246.
    [46]

    Chen L, Lee MJ, Li H, et al. Absorption, distribution, elimination of tea polyphenols in rats[J]. Drug Metab Dispos, 1997, 25(9):1045-1050.
    [47]

    Lee MJ, Maliakal P, Chen L, et al. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans:formation of different metabolites and individual variability[J]. Cancer Epidemiol Biomarkers Prev, 2002, 11(10 Pt 1):1025-1032.
    [48]

    Warden BA, Smith LS, Beecher GR, et al. Catechins are bioavailable in men and women drinking black tea throughout the day[J]. J Nutr, 2001, 131(6):1731-1737.
    [49]

    Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals[J]. J Nutr Biochem, 2014, 25(4):363-376.
    [50]

    Allen TM, Cullis PR. Drug delivery systems:entering the mainstream[J]. Sci, 2004, 303(5665):1818-1822.
    [51]

    Sanna V, Pintus G, Roggio AM, et al. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells[J]. J Med Chem, 2011, 54(5):1321-1332.
    [52]

    Chung JE, Tan S, Gao SJ, et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nat Nanotechnol, 2014, 9(11):907-912.
    [53]

    Siddiqui IA, Bharali DJ, Nihal M, et al. Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo[J]. Nanomedicine, 2014, 10(8):1619-1626.
    [54]

    Khan N, Bharali DJ, Adhami VM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model[J]. Carcinogenesis, 2013, 35(2):415-423.
    [55]

    Rocha S, Generalov R, Pereira Mdo C, et al. Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention[J]. Nanomedicine (Lond), 2011, 6(1):79-87.
    [56]

    Wang S, Moustaid-Moussa N, Chen L, et al. Novel insights of dietary polyphenols and obesity[J]. J Nutr Biochem, 2014, 25(1):1-18.
    [57]

    Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin:problems and promises[J]. Mol Pharm, 2007, 4(6):807-818.
    [58]

    Helson L. Curcumin (diferuloylmethane) delivery methods:a review[J]. BioFactors, 2013, 39(1):21-26.
    [59]

    Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy[J]. Chin Med, 2011, 6(31):8546.
    [60]

    Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo[J]. Biochem Pharmacol, 2010, 79(3):330-338.
    [61]

    Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticleencapsulated curcumin (nanocurcumin):a novel strategy for human cancer therapy[J]. J Nanobiotechnol, 2007, 5(3):1-18.
    [62]

    Aditya N, Shim M, Lee I, et al. Curcumin and genistein coloaded nanostructured lipid carriers:in vitro digestion and antiprostate cancer activity[J]. J Agric Food Chem, 2013, 61(8):1878-1883.
    [63]

    Sun J, Bi C, Chan HM, et al. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability[J]. Colloids Surf B Biointerfaces, 2013, 111:367-375.
    [64]

    Zhou N, Zan X, Wang Z, et al. Galactosylated chitosan-polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin[J]. Carbohydr Polym, 2013, 94(1):420-429.
    [65]

    Yallapu MM, Khan S, Maher DM, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer[J]. Biomaterials, 2014, 35(30):8635-8648.
    [66]

    Ranjan AP, Mukerjee A, Helson L, et al. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model:inhibition of tumor growth and angiogenesis[J]. Anticancer Res, 2013, 33(9):3603-3609.
    [67]

    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch[J]. Nat Rev Cancer, 2003, 3(6):401-410.
    [68]

    Danhier F, Feron O, Preat V. To exploit the tumor microenvironment:Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery[J]. J Control Release, 2010, 148(2):135-146.
    [69]

    Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine:a road to cancer therapeutics[J]. Curr Pharm Des, 2013, 19(11):1994-2010.
    [70]

    Master AM, Sen Gupta A. EGF receptor-targeted nanocarriers for enhanced cancer treatment[J]. Nanomedicine, 2012, 7(12):1895-1906.
    [71]

    Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations:a future nanomedicine for cancer[J]. Drug Discov Today, 2012, 17(1):71-80.
    [72]

    Palange AL, Di Mascolo D, Carallo C, et al. Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells[J]. Nanomed Nanotechnol Biol Med, 2014, 10(5):991-1002.
    [73]

    Anitha A, Deepa N, Chennazhi K, et al. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment[J]. Biochim Biophys Acta (BBA)-General Subjects, 2014, 1840(9):2730-2743.
    [74]

    Zhu R, Wu X, Xiao Y, et al. Synergetic effect of SLNcurcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line[J]. Cancer Biother Radiopharm, 2013, 28(8):579-587.
    [75]

    Wang P, Zhang L, Peng H, et al. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo[J]. Mater Sci Eng:C, 2013, 33(8):4802-4808.
    [76]

    Punfa W, Yodkeeree S, Pitchakarn P, et al. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells[J]. Acta Pharmacol Sin, 2012, 33(6):823-831.
    [77]

    Nair KL, Thulasidasan AKT, Deepa G, et al. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier[J]. Int J Pharm, 2012, 425(1):44-52.
    [78]

    Gou M, Men K, Shi H, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo[J]. Nanoscale, 2011, 3(4):1558-1567.
    [79]

    Nathiya S, Durga M, Thiyagarajan D. Quercetin, encapsulated quercetin and its application-a review[J]. Int J Pharmacy Pharm Sci, 2014, 6(10):20-26.
    [80]

    Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer chemoprevention[J]. Evid Based Complement Alternat Med, 2011:591356.
    [81]

    Duo J, Ying GG, Wang GW, et al. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation[J]. Mol Med Report, 2012, 5(6):1453-1456.
    [82]

    Niu G, Yin S, Xie S, et al. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells[J]. AcBBS, 2011, 43(1):30-37.
    [83]

    Zhang XA, Zhang S, Yin Q, et al. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway[J]. Pharmacogn Mag, 2015, 11(42):404.
    [84]

    Castillo MH, Perkins E, Campbell JH, et al. The effects of the bioflavonoid quercetin on squamous cell carcinoma of head and neck origin[J]. Am J Surg, 1989, 158(4):351-355.
    [85]

    Scambia G, Ranelletti F, Panici PB, et al. Inhibitory effect of quercetin on primary ovarian and endometrial cancers and synergistic activity with cis-diamminedichloroplatinum (II)[J]. Gynecol Oncol, 1992, 45(1):13-19.
    [86]

    Wang P, Zhang K, Zhang Q, et al. Effects of quercetin on the apoptosis of the human gastric carcinoma cells[J]. Toxicol In Vitro, 2012, 26(2):221-228.
    [87]

    Kuhar M, Sen S, Singh N. Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells[J]. Anticancer Res, 2006, 26(2A):1297-1303.
    [88]

    Wang G, Wang JJ, Yang GY, et al. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death[J]. Int J Nanomed, 2012, 7:271-280.
    [89]

    Rezaei-Sadabady R, Eidi A, Zarghami N, et al. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes[J]. Artif Cells Nanomed Biotechnol, 2014, 1-7.
    [90]

    Sun M, Nie S, Pan X, et al. Quercetin-nanostructured lipid carriers:Characteristics and anti-breast cancer activities in vitro[J]. Colloids Surf B Biointerfaces, 2014, 113:15-24.
    [91]

    Tan BJ, Liu Y, Chang KL, et al. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer[J]. Int J Nanomed, 2012, 7:651-661.
    [92]

    El-Gogary RI, Rubio N, Wang JT-W, et al. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo[J]. ACS Nano, 2014, 8(2):1384-1401.
    [93]

    Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell, 1995, 7(7):1085.
    [94]

    Harikumar KB, Aggarwal BB. Resveratrol:a multitargeted agent for age-associated chronic diseases[J]. Cell Cycle, 2008, 7(8):1020-1035.
    [95]

    Baliga MS, Meleth S, Katiyar SK. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems[J]. Clin Cancer Res, 2005, 11(5):1918-1927.
    [96]

    Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence[J]. Nat Rev Drug Discov, 2006, 5(6):493-506.
    [97]

    Saiko P, Szakmary A, Jaeger W, et al. Resveratrol and its analogs:defense against cancer, coronary disease and neurodegenerative maladies or just a fad?[J]. Mutat Res/Rev Mutat, 2008, 658(1):68-94.
    [98]

    Narayanan NK, Nargi D, Randolph C, et al. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice[J]. Int J Cancer, 2009, 125(1):1-8.
    [99]

    Wang XX, Li YB, Yao HJ, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells[J]. Biomaterials, 2011, 32(24):5673-5687.
    [100]

    Karthikeyan S, Prasad NR, Ganamani A, et al. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells[J]. Biomed Prev Nutr, 2013, 3(1):64-73.
    [101]

    Karthikeyan S, Hoti SL, Prasad NR. Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells[J]. Biomed Pharmacother, 2015, 70:274-282.
    [102]

    Guo L, Peng Y, Yao J, et al. Anticancer activity and molecular mechanism of resveratrol-Bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in Nude mice[J]. Cancer Biother Radiopharm, 2010, 25(4):471-477.
    [103]

    Vergaro V, Lvov YM, Leporatti S. Halloysite clay nanotubes for resveratrol delivery to cancer cells[J]. Macromol Biosci, 2012, 12(9):1265-1271.
    [104]

    Sanna V, Siddiqui IA, Sechi M, et al. Resveratrol-loaded nanoparticles based on poly (epsilon-caprolactone) and poly (d, l-lactic-co-glycolic acid)-poly (ethylene glycol) blend for prostate cancer treatment[J]. Mol Pharm, 2013, 10(10):3871-3881.
    [105]

    Jung KH, Lee JH, Park JW, et al. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo[J]. Int J Pharm, 2015, 478(1):251-257.
    [106]

    Bu L, Gan LC, Guo XQ, et al. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma[J]. Int J Pharm, 2013, 452(1):355-362.
    [107]

    Jose S, Anju S, Cinu T, et al. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery[J]. Int J Pharm, 2014, 474(1):6-13.
    [108]

    Banerjee S, Li Y, Wang Z, et al. Multi-targeted therapy of cancer by genistein[J]. Cancer Lett, 2008, 269(2):226-242.
    [109]

    Andrade LM, De Ftima Reis C, Maione-Silva L, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles[J]. Eur J Pharm Biopharm, 2014, 88(1):40-47.
    [110]

    Barnes S. Effect of genistein on in vitro and in vivo models of cancer[J]. J Nutr, 1995, 125(3 Suppl):777S-783S.
    [111]

    Mendes LP, Gaeti MPN, De vila PHM, et al. Multicompartimental nanoparticles for co-encapsulation and multimodal drug delivery to tumor cells and neovasculature[J]. Pharm Res, 2014, 31(5):1106-1119.
    [112]

    De Zampieri ALTC, Ferreira FS, Resende C, et al. Biodegradable polymeric nanocapsules based on poly (DL-lactide) for genistein topical delivery:obtention, characterization and skin permeation studies[J]. J Biomed Nanotechnol, 2013, 9(3):527-534.
    [113]

    Phan V, Walters J, Brownlow B, et al. Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas[J]. J Drug Targeting, 2013, 21(10):1001-1011.
    [114]

    Pham J, Brownlow B, Elbayoumi T. Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers[J]. Mol Pharm, 2013, 10(10):3789-3800.
    [115]

    Santos IS, Ponte BM, Boonme P, et al. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer[J]. Biotechnol Adv, 2013, 31(5):514-523.
    [116]

    Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer[J]. Biochem Pharmacol, 2012, 83(8):1104-1111.
    [117]

    Sanna V, Siddiqui IA, Sechi M, et al. Nanoformulation of natural products for prevention and therapy of prostate cancer[J]. Cancer Lett, 2013, 334(1):142-151.
    [118]

    Parveen S, Misra R, Sahoo SK. Nanoparticles:a boon to drug delivery, therapeutics, diagnostics and imaging[J]. Nanomed Nanotechnol Biol Med, 2012, 8(2):147-166.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(8416) PDF downloads(857) Cited by()

Related
Proportional views

Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals

    Corresponding author:
  • 1. Department of Nutritional Sciences, Texas Tech University, Lubbock TX 79409, USA;
  • 2. State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
  • 3. Nutrilite Health Institute, Buena Park, CA 90622, USA;
  • 4. Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun 130021, China
Fund Project:  This work was supported by grant from the National Center for Complementary & Integrative Health (Nos. R15AT007013 and R15AT008733).

Abstract: Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer.

Reference (118)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return