[1]
|
Li B, Gao MH, Chu XM, et al. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo[J]. Eur J Pharmacol, 2015, 749:107-114. |
[2]
|
Society A. C. American Cancer Society:Cancer Facts and Figures 2015[M]. American Cancer Society Atlanta, GA. 2015. |
[3]
|
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65(1):5-29. |
[4]
|
Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals[J]. Am J Clin Nutr, 2003, 78(3):517S-520S. |
[5]
|
Surh YJ. Cancer chemoprevention with dietary phytochemicals[J]. Nat Rev Cancer, 2003, 3(10):768-780. |
[6]
|
Basnet P, Skalko-Basnet N. Curcumin:an anti-inflammatory molecule from a curry spice on the path to cancer treatment[J]. Molecules, 2011, 16(6):4567-4598. |
[7]
|
Khushnud T, Mousa SA. Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer[J]. Mol Biotechnol, 2013, 55(1):78-86. |
[8]
|
Vidya Priyadarsini R, Nagini S. Cancer chemoprevention by dietary phytochemicals:promises and pitfalls[J]. Curr Pharm Biotechnol, 2012, 13(1):125-136. |
[9]
|
Wang S, Zhang J, Chen M, et al. Delivering flavonoids into solid tumors using nanotechnologies[J]. Expert Opin Drug Deliv, 2013, 10(10):1411-1428. |
[10]
|
Alexis F, Pridgen EM, Langer R, et al. Nanoparticle technologies for cancer therapy[J]. Handb Exp Pharmacol, 2010, 197:55-86. |
[11]
|
Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system[J]. J Biomed Nanotech, 2013, 9(5):741-750. |
[12]
|
Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals[J]. J Nutr Biochem, 2014, 25(4):363-376. |
[13]
|
Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages:mechanism of action, preparation of liposomes and applications[J]. J Immunol Methods, 1994, 174(1):83-93. |
[14]
|
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs[J]. Annu Rev Med, 2012, 63:185-198. |
[15]
|
Mohanraj V, Chen Y. Nanoparticles-a review[J]. Trop J Pharm Res, 2007, 5(1):561-573. |
[16]
|
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers[J]. Nat Rev Drug discov, 2005, 4(2):145-160. |
[17]
|
Torchilin VP. Multifunctional nanocarriers[J]. Adv Drug Del Rev, 2012, 64:302-315. |
[18]
|
Nair HB, Sung B, Yadav VR, et al. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer[J]. Biochem Pharmacol, 2010, 80(12):1833-1843. |
[19]
|
Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells[J]. Mol Pharm, 2009, 6(3):928-939. |
[20]
|
Pool H, Mendoza S, Xiao H, et al. Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems:impact of physical form on quercetin bioaccessibility[J]. Food Funct, 2013, 4(1):162-174. |
[21]
|
Davidov-Pardo G, Mcclements DJ. Nutraceutical delivery systems:Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification[J]. Food Chem, 2015, 167:205-212. |
[22]
|
Argenta DF, De Mattos CB, Misturini FD, et al. Factorial design applied to the optimization of lipid composition of topical antiherpetic nanoemulsions containing isoflavone genistein[J]. Int J Nanomed, 2014, 9(1):4737-4747. |
[23]
|
Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review[J]. J Controlled Release, 2008, 128(3):185-199. |
[24]
|
Wissing S, Kayser O, Mller R. Solid lipid nanoparticles for parenteral drug delivery[J]. Adv Drug Del Rev, 2004, 56(9):1257-1272. |
[25]
|
Ekambaram P, Sathali AAH, Priyanka K. Solid lipid nanoparticles:a review[J]. Sci Rev Chem Commun, 2012, 2(1):80-102. |
[26]
|
Mu ller RH, Ma der K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art[J]. Eur J Pharm Biopharm, 2000, 50(1):161-177. |
[27]
|
Hou D, Xie C, Huang K, et al. The production and characteristics of solid lipid nanoparticles (SLNs)[J]. Biomaterials, 2003, 24(10):1781-1785. |
[28]
|
Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs):development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?[J]. Eur J Pharm Sci, 2012, 47(1):139-151. |
[29]
|
Fang JY, Fang CL, Liu CH, et al. Lipid nanoparticles as vehicles for topical psoralen delivery:solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC)[J]. Eur J Pharm Biopharm, 2008, 70(2):633-640. |
[30]
|
Torchilin VP. Micellar nanocarriers:pharmaceutical perspectives[J]. Pharm Res, 2007, 24(1):1-16. |
[31]
|
Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies[J]. Adv Drug Del Rev, 2008, 60(8):899-914. |
[32]
|
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery:strategies and underlying principles[J]. Nanomedicine, 2010, 5(3):485-505. |
[33]
|
Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles[J]. J Biomater Sci Polym Ed, 2006, 17(3):247-289. |
[34]
|
Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery[J]. Biomaterials, 2006, 27(15):3031-3037. |
[35]
|
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines[J]. J Nanobiotechnol, 2011, 9(55):1-11. |
[36]
|
Khalil NM, Do Nascimento TCF, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats[J]. Colloids Surf B Biointerfaces, 2013, 101:353-360. |
[37]
|
Sanna V, Roggio AM, Pala N, et al. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol[J]. Int J Biol Macromol, 2015, 72:531-536. |
[38]
|
Pool H, Quintanar D, De Dios Figueroa J, et al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles[J]. J Nanomater, 2012, 2012:86. |
[39]
|
Zhang J, Nie S, Wang S. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages[J]. J Agric Food Chem, 2013, 61(38):9200-9209. |
[40]
|
Jankun J, Selman SH, Swiercz R, et al. Why drinking green tea could prevent cancer.[J]. Nature, 1997, 387(6633):561. |
[41]
|
Du GJ, Zhang Z, Wen XD, et al. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea[J]. Nutrients, 2012, 4(11):1679-1691. |
[42]
|
Cao Y, Cao R. Angiogenesis inhibited by drinking tea[J]. Nature, 1999, 398(6726):381. |
[43]
|
Lambert JD, Yang CS. Mechanisms of cancer prevention by tea constituents[J]. J Nutr, 2003, 133(10):3262S-3267S. |
[44]
|
De Pace RC, Liu X, Sun M, et al. Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells[J]. J Liposome Res, 2013, 23(3):187-196. |
[45]
|
Hong J, Lu H, Meng X, et al. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells[J]. Cancer Res, 2002, 62(24):7241-7246. |
[46]
|
Chen L, Lee MJ, Li H, et al. Absorption, distribution, elimination of tea polyphenols in rats[J]. Drug Metab Dispos, 1997, 25(9):1045-1050. |
[47]
|
Lee MJ, Maliakal P, Chen L, et al. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans:formation of different metabolites and individual variability[J]. Cancer Epidemiol Biomarkers Prev, 2002, 11(10 Pt 1):1025-1032. |
[48]
|
Warden BA, Smith LS, Beecher GR, et al. Catechins are bioavailable in men and women drinking black tea throughout the day[J]. J Nutr, 2001, 131(6):1731-1737. |
[49]
|
Wang S, Su R, Nie S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals[J]. J Nutr Biochem, 2014, 25(4):363-376. |
[50]
|
Allen TM, Cullis PR. Drug delivery systems:entering the mainstream[J]. Sci, 2004, 303(5665):1818-1822. |
[51]
|
Sanna V, Pintus G, Roggio AM, et al. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells[J]. J Med Chem, 2011, 54(5):1321-1332. |
[52]
|
Chung JE, Tan S, Gao SJ, et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nat Nanotechnol, 2014, 9(11):907-912. |
[53]
|
Siddiqui IA, Bharali DJ, Nihal M, et al. Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo[J]. Nanomedicine, 2014, 10(8):1619-1626. |
[54]
|
Khan N, Bharali DJ, Adhami VM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model[J]. Carcinogenesis, 2013, 35(2):415-423. |
[55]
|
Rocha S, Generalov R, Pereira Mdo C, et al. Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention[J]. Nanomedicine (Lond), 2011, 6(1):79-87. |
[56]
|
Wang S, Moustaid-Moussa N, Chen L, et al. Novel insights of dietary polyphenols and obesity[J]. J Nutr Biochem, 2014, 25(1):1-18. |
[57]
|
Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin:problems and promises[J]. Mol Pharm, 2007, 4(6):807-818. |
[58]
|
Helson L. Curcumin (diferuloylmethane) delivery methods:a review[J]. BioFactors, 2013, 39(1):21-26. |
[59]
|
Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy[J]. Chin Med, 2011, 6(31):8546. |
[60]
|
Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo[J]. Biochem Pharmacol, 2010, 79(3):330-338. |
[61]
|
Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticleencapsulated curcumin (nanocurcumin):a novel strategy for human cancer therapy[J]. J Nanobiotechnol, 2007, 5(3):1-18. |
[62]
|
Aditya N, Shim M, Lee I, et al. Curcumin and genistein coloaded nanostructured lipid carriers:in vitro digestion and antiprostate cancer activity[J]. J Agric Food Chem, 2013, 61(8):1878-1883. |
[63]
|
Sun J, Bi C, Chan HM, et al. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability[J]. Colloids Surf B Biointerfaces, 2013, 111:367-375. |
[64]
|
Zhou N, Zan X, Wang Z, et al. Galactosylated chitosan-polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin[J]. Carbohydr Polym, 2013, 94(1):420-429. |
[65]
|
Yallapu MM, Khan S, Maher DM, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer[J]. Biomaterials, 2014, 35(30):8635-8648. |
[66]
|
Ranjan AP, Mukerjee A, Helson L, et al. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model:inhibition of tumor growth and angiogenesis[J]. Anticancer Res, 2013, 33(9):3603-3609. |
[67]
|
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch[J]. Nat Rev Cancer, 2003, 3(6):401-410. |
[68]
|
Danhier F, Feron O, Preat V. To exploit the tumor microenvironment:Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery[J]. J Control Release, 2010, 148(2):135-146. |
[69]
|
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanomedicine:a road to cancer therapeutics[J]. Curr Pharm Des, 2013, 19(11):1994-2010. |
[70]
|
Master AM, Sen Gupta A. EGF receptor-targeted nanocarriers for enhanced cancer treatment[J]. Nanomedicine, 2012, 7(12):1895-1906. |
[71]
|
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations:a future nanomedicine for cancer[J]. Drug Discov Today, 2012, 17(1):71-80. |
[72]
|
Palange AL, Di Mascolo D, Carallo C, et al. Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells[J]. Nanomed Nanotechnol Biol Med, 2014, 10(5):991-1002. |
[73]
|
Anitha A, Deepa N, Chennazhi K, et al. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment[J]. Biochim Biophys Acta (BBA)-General Subjects, 2014, 1840(9):2730-2743. |
[74]
|
Zhu R, Wu X, Xiao Y, et al. Synergetic effect of SLNcurcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line[J]. Cancer Biother Radiopharm, 2013, 28(8):579-587. |
[75]
|
Wang P, Zhang L, Peng H, et al. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo[J]. Mater Sci Eng:C, 2013, 33(8):4802-4808. |
[76]
|
Punfa W, Yodkeeree S, Pitchakarn P, et al. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells[J]. Acta Pharmacol Sin, 2012, 33(6):823-831. |
[77]
|
Nair KL, Thulasidasan AKT, Deepa G, et al. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier[J]. Int J Pharm, 2012, 425(1):44-52. |
[78]
|
Gou M, Men K, Shi H, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo[J]. Nanoscale, 2011, 3(4):1558-1567. |
[79]
|
Nathiya S, Durga M, Thiyagarajan D. Quercetin, encapsulated quercetin and its application-a review[J]. Int J Pharmacy Pharm Sci, 2014, 6(10):20-26. |
[80]
|
Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer chemoprevention[J]. Evid Based Complement Alternat Med, 2011:591356. |
[81]
|
Duo J, Ying GG, Wang GW, et al. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation[J]. Mol Med Report, 2012, 5(6):1453-1456. |
[82]
|
Niu G, Yin S, Xie S, et al. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells[J]. AcBBS, 2011, 43(1):30-37. |
[83]
|
Zhang XA, Zhang S, Yin Q, et al. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway[J]. Pharmacogn Mag, 2015, 11(42):404. |
[84]
|
Castillo MH, Perkins E, Campbell JH, et al. The effects of the bioflavonoid quercetin on squamous cell carcinoma of head and neck origin[J]. Am J Surg, 1989, 158(4):351-355. |
[85]
|
Scambia G, Ranelletti F, Panici PB, et al. Inhibitory effect of quercetin on primary ovarian and endometrial cancers and synergistic activity with cis-diamminedichloroplatinum (II)[J]. Gynecol Oncol, 1992, 45(1):13-19. |
[86]
|
Wang P, Zhang K, Zhang Q, et al. Effects of quercetin on the apoptosis of the human gastric carcinoma cells[J]. Toxicol In Vitro, 2012, 26(2):221-228. |
[87]
|
Kuhar M, Sen S, Singh N. Role of mitochondria in quercetin-enhanced chemotherapeutic response in human non-small cell lung carcinoma H-520 cells[J]. Anticancer Res, 2006, 26(2A):1297-1303. |
[88]
|
Wang G, Wang JJ, Yang GY, et al. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death[J]. Int J Nanomed, 2012, 7:271-280. |
[89]
|
Rezaei-Sadabady R, Eidi A, Zarghami N, et al. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes[J]. Artif Cells Nanomed Biotechnol, 2014, 1-7. |
[90]
|
Sun M, Nie S, Pan X, et al. Quercetin-nanostructured lipid carriers:Characteristics and anti-breast cancer activities in vitro[J]. Colloids Surf B Biointerfaces, 2014, 113:15-24. |
[91]
|
Tan BJ, Liu Y, Chang KL, et al. Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer[J]. Int J Nanomed, 2012, 7:651-661. |
[92]
|
El-Gogary RI, Rubio N, Wang JT-W, et al. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo[J]. ACS Nano, 2014, 8(2):1384-1401. |
[93]
|
Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell, 1995, 7(7):1085. |
[94]
|
Harikumar KB, Aggarwal BB. Resveratrol:a multitargeted agent for age-associated chronic diseases[J]. Cell Cycle, 2008, 7(8):1020-1035. |
[95]
|
Baliga MS, Meleth S, Katiyar SK. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems[J]. Clin Cancer Res, 2005, 11(5):1918-1927. |
[96]
|
Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence[J]. Nat Rev Drug Discov, 2006, 5(6):493-506. |
[97]
|
Saiko P, Szakmary A, Jaeger W, et al. Resveratrol and its analogs:defense against cancer, coronary disease and neurodegenerative maladies or just a fad?[J]. Mutat Res/Rev Mutat, 2008, 658(1):68-94. |
[98]
|
Narayanan NK, Nargi D, Randolph C, et al. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice[J]. Int J Cancer, 2009, 125(1):1-8. |
[99]
|
Wang XX, Li YB, Yao HJ, et al. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells[J]. Biomaterials, 2011, 32(24):5673-5687. |
[100]
|
Karthikeyan S, Prasad NR, Ganamani A, et al. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells[J]. Biomed Prev Nutr, 2013, 3(1):64-73. |
[101]
|
Karthikeyan S, Hoti SL, Prasad NR. Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells[J]. Biomed Pharmacother, 2015, 70:274-282. |
[102]
|
Guo L, Peng Y, Yao J, et al. Anticancer activity and molecular mechanism of resveratrol-Bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in Nude mice[J]. Cancer Biother Radiopharm, 2010, 25(4):471-477. |
[103]
|
Vergaro V, Lvov YM, Leporatti S. Halloysite clay nanotubes for resveratrol delivery to cancer cells[J]. Macromol Biosci, 2012, 12(9):1265-1271. |
[104]
|
Sanna V, Siddiqui IA, Sechi M, et al. Resveratrol-loaded nanoparticles based on poly (epsilon-caprolactone) and poly (d, l-lactic-co-glycolic acid)-poly (ethylene glycol) blend for prostate cancer treatment[J]. Mol Pharm, 2013, 10(10):3871-3881. |
[105]
|
Jung KH, Lee JH, Park JW, et al. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo[J]. Int J Pharm, 2015, 478(1):251-257. |
[106]
|
Bu L, Gan LC, Guo XQ, et al. Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma[J]. Int J Pharm, 2013, 452(1):355-362. |
[107]
|
Jose S, Anju S, Cinu T, et al. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery[J]. Int J Pharm, 2014, 474(1):6-13. |
[108]
|
Banerjee S, Li Y, Wang Z, et al. Multi-targeted therapy of cancer by genistein[J]. Cancer Lett, 2008, 269(2):226-242. |
[109]
|
Andrade LM, De Ftima Reis C, Maione-Silva L, et al. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles[J]. Eur J Pharm Biopharm, 2014, 88(1):40-47. |
[110]
|
Barnes S. Effect of genistein on in vitro and in vivo models of cancer[J]. J Nutr, 1995, 125(3 Suppl):777S-783S. |
[111]
|
Mendes LP, Gaeti MPN, De vila PHM, et al. Multicompartimental nanoparticles for co-encapsulation and multimodal drug delivery to tumor cells and neovasculature[J]. Pharm Res, 2014, 31(5):1106-1119. |
[112]
|
De Zampieri ALTC, Ferreira FS, Resende C, et al. Biodegradable polymeric nanocapsules based on poly (DL-lactide) for genistein topical delivery:obtention, characterization and skin permeation studies[J]. J Biomed Nanotechnol, 2013, 9(3):527-534. |
[113]
|
Phan V, Walters J, Brownlow B, et al. Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas[J]. J Drug Targeting, 2013, 21(10):1001-1011. |
[114]
|
Pham J, Brownlow B, Elbayoumi T. Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers[J]. Mol Pharm, 2013, 10(10):3789-3800. |
[115]
|
Santos IS, Ponte BM, Boonme P, et al. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer[J]. Biotechnol Adv, 2013, 31(5):514-523. |
[116]
|
Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer[J]. Biochem Pharmacol, 2012, 83(8):1104-1111. |
[117]
|
Sanna V, Siddiqui IA, Sechi M, et al. Nanoformulation of natural products for prevention and therapy of prostate cancer[J]. Cancer Lett, 2013, 334(1):142-151. |
[118]
|
Parveen S, Misra R, Sahoo SK. Nanoparticles:a boon to drug delivery, therapeutics, diagnostics and imaging[J]. Nanomed Nanotechnol Biol Med, 2012, 8(2):147-166. |