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[ABSTRACT] Honokiol is the dominant biphenolic compound isolated from the Magnolia tree, and has long been considered as the
active constituent of the traditional Chinese herb, ‘Houpo’, which is widely used to treat symptoms due to ‘stagnation of ¢i’. Pharma-
cological studies have shown that honokiol possesses a wide range of bioactivities without obvious toxicity. Honokiol protects the liv-
er, kidneys, nervous system, and cardiovascular system through reducing oxidative stress and relieving inflammation. Moreover, hon-
okiol shows anti-diabetic property through enhancing insulin sensitivity, and anti-obese property through promoting browning of
adipocytes. In vivo and in vitro studies indicated that honokiol functions as an anti-cancer agent through multiple mechanisms: inhibit-

ing angiogenesis, promoting cell apoptosis, and regulating cell cycle. A variety of therapeutic effects of honokiol may be associated

with its physiochemical properties, which make honokiol readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier,

with high bioavailability. In the future, more clinical researches on honokiol are needed to fully authenticate its therapeutic values.
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Introduction

Magnolia barks have been commonly used as traditional
alternative medicines for treating stress-related symptoms due
to anxiety and emotional imbalances, especially in China and
Japan. Honokiol (HK, Fig. 1) is a lignan which has been con-
sidered as one of main biological active compounds in the
Magnolia tree, along with magnolol, 4-O-methylhonokiol,
and obovatol. HK was initially isolated from Magnolia
obovata, which is a component of herbal tea, including
Houpo and Saiboku-tu ™. The compound exhibits multifunc-
tional activities, such as anti-oxidation, anti-inflammation,
kidney protection, liver protection, neuroprotection, cardi-
ovascular protection, anti-obesity, anti-diabetes and anti-can-
cer (Table 1). Because of its physical properties, HK can
readily cross the blood brain barrier (BBB) and the blood-
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cerebrospinal fluid barrier (BCFB), acting as a potent candid-
ate with high bioavailability. Interestingly, HK is identified as
an activator of sirtuin 3 (SIRT3), an NAD'-dependent
deacetylase, in cardiomyocytes !
aimed to summarize the natural sources, traditional uses and
physicochemical properties of HK, discuss the pharmacolo-
gical properties and clinical trials of HK in the recent years,

. The current review is

and evaluate its therapeutic potential in the future.
Natural Sources and Traditional Uses of HK

HK is widely distributed in the barks, seed cones, and
leaves of the Magnolia tree in many parts of the world © *.
For traditional herbal medicine, especially in China and Ja-
pan, M. biondii, M. obovata, and M. officinalis are com-
monly used, which are the major natural sources of HK . M.
grandiflora, a native species of South American, and M. deal-
bata, a Mexican species, have also been reported as the
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Fig.1 Chemical structure of HK
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Table 1 Pharmacological activities of HK in vivo and in vitro

Disease model/

. . Model Regulated substances/receptors Reference
Pharmacological activity
. Inflammatory cytokines (IL-15, IL-18, TNF-a,
Inflammation HRMCs [16]
PGE2, TGF-f1, NO and ROS)
Glomerulonephritis (GN) Wistar rats ICAM-1 and MCP-1 mRNA [20]
Inflammation Macrophages MAPKs, PKC-a, and NF-«B pathways [21]
. . C-Fos protein in the superficial (I-1T)
Inflammatory pain NMRI mice . [24]
laminae of the L4-L5 lumbar dorsal horn
Eccentric exercise-induced .
Wistar rats NF-«B [23]
skeletal muscle damage
. . . Inflammatory cytokines (IL-17, IL-1§ and TNF-a), matrix
Collagen-induced arthritis DBA/1J mice . [18]
metalloproteinases (MMP-3, MMP-9 and MMP-13)
Oxidative damage AML 12 hepatocytes SIRT3 [13]
Liver oxidative injury C57BL/6 mice SIRT3 [13]
Acute cytotoxicity Renal epithelial cells ROS and cytoskeletal protein (actin and tubulin) [26]
. TGF-f1/Smad signaling pathway, extracellular matrix
Renal fibrosis NRK-52E cells . [28]
Type I (al) collagen and fibronectin
Alcoholic fatty liver Wistar rats SREBP-1c [86]
NAFLD CS57BL/6J mice PPAR-y [37]
Oxidative stress induced
. PCI12 cells Keap1/Nrf2/ARE pathway [43]
neurotoxicity
Cerebral ischemia ICR mice Na'’, K'-ATPase activity and mitochondrial functions [41]
AD PCI12 cells ROS, intracellular calcium, and caspase-3 [44]
CUMS ICR mice S5-HT [47]
MI/R SD rats SIRT1-Nrf2 pathway [50]
Spontaneously hypertension SHR NO, and RhoA/Rho-kinase pathway [52]
Atherosclerosis RASMCs ERK-NF-xB pathway [55]
HG and IT INS-1 cells Nrf2/ARE pathway [58]
Type 2 diabetes KKAy mice PPAR-y [60]
Obesity 3T3-L1 preadipocytes Ras/ERK1/2 and PI3K/Akt pathways [61]
. . . Human retinal pigment epithelial cells
Anti-angiogenesis HIF pathway [78]
(D407)
Anti-angiogenesis Mouse Dj; ES cells MAPK/mTOR signaling pathway [80]
. . . ER-negative human breast . . .
Anti-proliferation . c-Src/EGFR-mediated signaling pathway [67]
adenocarcinoma MDA-MB-231 cells
. . . Protein levels and/or phosphorylation of
Anti-proliferation PC-3 and LNCaP cells [69]

Cell migration HepG2 cells
Apoptosis HepG2 cells
Lymphangiogenesis and
ymphanglogen C57BL/6 mice
metastasis
Apoptosis Human NSCLC cells

Rb and E2F1

Ras GTPase-activating-like protein (IQGAP1), Cdc42/Racl [87]

MAPK, procaspase-3 and -9, caspase-3 [74]
VEGFR-3 [88]
cellular FLICE-inhibitory protein (c-FLIP) [89]

sources of HK. Furthermore, many HK derivatives have been
isolated, including 8', 9'-dihydroxymagnaldehyde E (1), 8', 9'-
dihydroxyhonokiol (2), erythro-7-O-methylhonokitriol (3),
erythro-honokitriol (4), threo-7-O-methylhonokitriol (5),
threo-honokitriol (6), magnaldehyde E (7), magnotriol B (8),
magnaldehyde B (9), and magnolol (10) (Fig. 2) ©.

In China, Magnolia bark is called Houpo, which has

been widely used in traditional Chinese medicine (TCM) for-
mulas, such as Banxia Houpo Tang, Xiao Zhengai Tang,
Pingwei San and Shenmi Tang ™ . Houpo is traditionally
used in Eastern Asia as an analgesic in the treatment of anxi-

ety and mood disorders 7

. In Japan, Hange-koboku-to
(Banxia-houpo-tang) and Saiboku-tu, two prescriptions con-

taining Magnolia barks, are still used in clinical setting ™.
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Fig. 2 Examples of HK derivatives from traditional Chinese herbs, 8, 9'-dihydroxymagnaldehyde E (1), 8', 9’-dihydroxyhonoki-
ol (2), erythro-7-O-methylhonokitriol (3), erythro-honokitriol (4), threo-7-O-methylhonokitriol (5), threo-honokitriol (6), magnal-
dehyde E (7), magnotriol B (8), magnaldehyde B (9), and magnolol (10)

Notably, Hange-koboku-to is generally used to treat symp-
toms such as hoarseness and foreign body sensation in the
throat.

Physicochemical Properties of HK

HK belongs to the class of neolignan biphenols and can
be synthesized in the shikimic acid pathway . The molecu-
lar mass of HK (CygH;30,) is 266.34 g-mol™". The Interna-
tional Union of Pure and Applied Chemistry (IUPAC) name
of HK is 2-(4-hydroxy-3-prop-2-enylphenyl)-4-prop-2-enyl-
phenol. HK is a fine white powder with an aromatic smell.
The monomer is colorless scale-like crystals. The melting
temperature and boiling point of HK are 86-86.5 °C and
400 °C, respectively. It is soluble in common organic
solvents, easily soluble in benzene, ether, chloroform, and
ethanol, but insoluble in water.

Pharmacological Activities of HK

Anti-oxidation

Generally, phagocytes (such as neutrophils, eosinophils
and monocytes) produce reactive oxygen species (ROS)
when being stimulated, and excessive accumulation of ROS
1% Tt was reported that HK reduces
the activity of assembled-nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, which is the major ROS produ-
cing enzyme in neutrophils '\, Further studies indicated that
HK is a pharmacological activator of SIRT3 in the mitochon-
dria, and can increase oxygen consumption rate and reduce

causes oxidative stress

ROS production "', Oxidative stress is a critical cause of liv-
er damage. A recent study found that HK protects tert-butyl
hydroperoxide (-BHP)-injured AMLI12 hepatocytes and
chloroform-induced liver damage in mice through activating

SIRT3. HK weakens the acetylation of superoxide dismutase
2 (SOD2) and peroxisome proliferator-activated receptor y
coactivator-1la (PGC-1a) to decrease ROS accumulation and
promote mitochondrial biogenesis, respectively. Through reg-
ulating the Ku70 dynamic-related protein 1 axis, HK attenu-
ates -BHP-induced mitochondrial destruction ""*. By scaven-
ging free radicals and regulating active oxygen levels, HK
directly or indirectly participates in various regulations of ox-
idative stress, which might be due to its phenolic core struc-
ture . Coupled with its high fat solubility, the anti-oxidat-
ive property of HK might be one of the major reasons for
HK’s versatility. The traditional functions of Houpo are to
warm the middle, lower the ¢i, dry dampness and resolve
phlegm, which might be attributable to the anti-oxidative
property of HK.

Anti-inflammation

Inflammation is the response of the body’s immune sys-
tem to pathogenic factors and their damage. Many diseases
are accompanied with inflammation, such as neurodegenerat-
ive diseases, cancer, pain, and metabolic disorders. Due to
adverse reactions, many anti-inflammatory agents are not
suitable for long-term use. In contrast, traditional herbal
medicines have long been used for treatment of acute or
chronic inflammation; more and more researchers confine
their attention to natural compounds.

HK exerts anti-inflammatory effects through regulating a
variety of inflammatory mediators. In human renal mesangi-
al cells (HRMCs), HK inhibits the expression of high gluc-
ose (HG)-induced pro-inflammatory cytokines, for instance
interleukin (IL)-1p, IL-17, IL-18, tumor necrosis factor-a
(TNF-a), prostaglandin E2 (PGE2), transforming growth
factor-f1 (TGF-f1) and nitric oxide (NO), in a dose-depend-
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ent manner "', Oral administration of HK inhibits the pro-
gression of collagen-induced arthritis by reducing the expres-
sion of matrix metalloproteinases (MMP-3, MMP-9, and
MMP-13) and oxidative stress .

Moreover, HK markedly inhibits the expression of
chemokines, such as monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein-la (MIP-1a),
and RANTES, which are essential in the pathogenesis of dia-
betic nephropathy (DN) and non-diabetic nephropathy
(NDN) " " In rats with anti-Thy1 disease, HK attenuates
proteinuria, reduces the accumulation of glomerular macro-
phages, suppresses the proliferation of mesangial cells, and
ameliorates glomerular sclerosis through suppressing intra-
cellular adhesion molecule-1 (ICAM-1) and MCP-1 mRNA
in the early phase *”.

The inflammation-related signaling pathways are also in-
volved in the anti-inflammatory effect of HK. In macro-
phages, HK inhibits lipopolysaccharide (LPS)-induced phos-
phorylation of extracellular signal regulated kinase 1/2
(ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), and p38.
Furthermore, HK suppresses the membrane translocation of
protein kinase C (PKC)-a, and the activation of nuclear tran-
scription factor x-B (NF-xB) *" ). Through inactivating NF-
xB, HK downregulates the expression for cyclooxygenase-2
(COX-2), inducible NO synthase (iNOS) and proinflammat-
ory cytokine genes, and protects Wistar rats against skeletal
muscle damage caused by inflammation ™. In an inflammat-
ory pain model of NMRI mice induced by glutamate, HK ex-
erts analgesic effects through reducing the expression of c-
Fos protein in the superficial (I-II) layer of the L4-L5 low back
horn ¥,

Both in vivo and in vitro results suggest the potent anti-
inflammatory property of HK, mainly through down-regula-
tion of pro-inflammatory factors, which indicate the potential
role of HK in the treatment of inflammation-related diseases.
In traditional Chinese medicine, Houpo is used as an analges-
ic, which might be related with the anti-inflammatory effect
of HK.

Kidney protection

Many studies reported the protective effect of HK on the
kidneys ™!, This function is closely related to its anti-oxid-
ative activity. HK alleviates aristolochic acid-mediated neph-
rotoxicity by reducing ROS level and maintaining cell redox

20 By increasing the

balance and anti-oxidative capacity '
levels of actin and tubulin, HK stabilizes the cytoskeletal
morphology, thereby maintaining the polarity and morpho-
logy of renal epithelial cells . Overexpression of extracellu-
lar matrix (ECM) is an important feature of the pathogenesis
of fibrosis . The TGF-A1 signaling pathway can activate tu-
bulointerstitial fibrosis. TGF-f1 and connective tissue growth
factor (CTGF)-induced phosphorylation of Smad-2/3 in renal
tubular cells was inhibited by HK *®*). HK also decreases
the mRNA expression of MCP-1 and ICAM-1, as well as the
accumulation of ECM (type I collagen and fibronectin) in

[28

renal fibrosis rats *. HK might represent a therapeutic agent

®

to treat renal fibrosis. The above bioactivities of HK might
contribute to traditional application of Houpo in treating wa-
ter poisoning syndrome.
Liver protection

In rat and human liver, the main metabolic pathways of
® HK has a great
influence on the activity of human liver microsome cyto-

HK include glucuronidation and sulfation

chrome P (CYP) 450 enzymes and uridine diphosphate-

glucuronic
[31-33
es

acid-glucuronosyltransferase (UGT) enzym-
1 CYP450 enzyme isoforms show different impacts on
the metabolism of HK in rat liver microsomes: CYP2E1 sub-
type enzyme is responsible for the oxidation of HK terminal
double bonds to epoxy metabolites, CYP3A4 subtype en-
zyme is responsible for further hydrolytic metabolism, and
CYP1A2 promotes the cleavage of the carbonyl groups . In
rats treated with HK, the pharmacokinetic parameters of theo-
phylline and tolbutamide were changed, which may be due to
inhibition of CYPIA2 and CYP2CI11 P¥. Actually, HK
strongly inhibited CYP1A2-mediated phenacetin O-deethyla-
tion, CYP2C8-mediated amodiaquine N-deethylation,
CYP2C9-mediated diclofenac 4-hydroxylation, CYP2C19-
mediated S-mephenytoin 4-hydroxylation, and UGT1A9-me-
diated propofol glucuronidation °". These studies suggest
that HK may affect the metabolism of other drugs when ad-
ministered together. During clinical application, pharmacovi-
gilance should be done to prevent adverse reactions.

Long-term alcohol consumption is an important cause of
liver fibrosis. Alcohol abuse promotes the secretion of pro-in-
flammatory cytokines (TNF-a, IL6 and IL8), oxidative stress
and lipid peroxidation, which in turn result in inflammation,
apoptosis and fibrosis. In ethanol-treated RAW264.7 cells,
extracts containing HK reduces the production of TNF-a,
ROS and superoxide anion free radicals, the activation of
NADPH oxidase, and ultimately cell death **. When liver in-
jury occurs, serum indicators increase, including alanine
aminotransferase (ALT) and aspartate aminotransferase
(AST). Treatment with HK not only reduces ALT and AST in
serum, but also reduces the levels of liver malondialdehyde
(MDA), one of the important products of lipid peroxida-
tion ®*?*7. Glutathione (GSH) is an important antioxidant par-
ticipating in ROS scavenging in many organelles. HK treat-
ment restored hepatic GSH content and inhibited TNF-a se-
cretion in chronic ethanol-fed rats ®*. Moreover, HK was re-
ported to ameliorate alcoholic steatosis through blocking ster-
ol regulatory element-binding protein-1c (SREBP-1c)-medi-
ated fatty acid synthesis **. Liver macrophages, both pro-in-
flammatory M1 type and anti-inflammatory M2 type, play a
key role in the pathogenesis of hepatitis **. HK has a protect-
ive effect on nonalcoholic fatty liver disease (NAFLD), pos-
sibly through polarizing macrophages to M2 phenotype
through peroxisome proliferator-activated receptor (PPAR)-y
activation >\, In China, Houpo is often prescribed to treat
hangover, which may be partly verified by the above bio-
activities of HK.
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Neuroprotection

Houpo is reported to relieve headache and irritability,
thus the regulatory effect of HK on the nervous system has
been widely investigated. HK possesses neuroprotective
property, mainly due to its ability to across the BBB and
BSCB P”*). The brain and nerves have a high oxygen con-
sumption rate, with a large amount of lipids as energy source,
which are vulnerable to oxidative stress. By inhibiting the
production of ROS and maintaining mitochondrial function
and Na', K'-ATPase activity, HK protects the brain against

®1 Though elevation of

ischemia-reperfusion injury in mice
GSH level and upregulation of cytoprotective molecules, in-
cluding heme oxygenase-1 (HO-1), NAD(P)H: quinone ox-
idoreductase 1 (NQOL1), thioredoxin (Trx1) and Trx1 re-
ductase (Trx1R), HK alleviates oxidative stress induced neur-
otoxicity via the Kelch-like ECH-associated protein 1
(Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/an-
tioxidant response element (ARE) pathway *>*1.

Actually, HK decreases amyloid S peptide (Af)-induced
PC12 cells death through suppression of intracellular calci-
um elevation and inhibition of caspase-3 activity, which
provides new evidence for the treatment of Alzheimer’s dis-
ease 1. Moreover, HK prevents learning and memory
impairment and cholinergic deficit in SAMP8 mice ™. It was
reported that the extract from the barks of M. officinalis, con-
taining HK as the major constituent, shortened the immobil-
ity time of mice in the forced swimming test and tail suspen-
sion test, reduced 5-hydroxytryptamine (5-HT) turnover in
some brain regions (the frontal cortex, hippocampus, stri-
atum, hypothalamus and nucleus accumbens), and reversed
chronic unpredictable mild stress (CUMS)-induced deficit in
sucrose intake to prevent anhedonia in rats “**,

The above studies showed that HK is involved in protect-
ing cerebral ischemia, and possesses the effects of anti-learn-
ing and memory disorders, anti-Alzheimer’s disease, and anti-
anxiety. However, the underlying mechanisms are complex.
For better practical applications of HK in neuroprotection,
further clinical trials are needed to verify its safety and effect-
iveness.

Cardiovascular protection

In traditional Chinese medicine, Houpo is used to elimin-
ate tightness in the chest and abdomen, and invigorate blood
circulation, which might be correlated with the strong pro-
tective effect of HK on the heart ™. In recent years, the role
of oxidative stress on cardiovascular diseases and the under-
lying mechanisms have received widespread attentions. It is
generally believed that oxidative stress is involved in athero-
sclerosis, hypertension, upset tremor, myocardial ischemia/
reperfusion injury, and cardiomyopathy. HK ameliorates
myocardial ischemia/reperfusion injury in type 1 diabetic rats
through activating the SIRT1/Nrf2 signaling pathway ©.
During this process, HK activated SIRT1, enhanced Nrf2
nuclear translocation, increased anti-oxidative capacity, and
decreased apoptosis ** "\ Additionally, HK has a therapeutic
window of at least 5 h after the onset of cerebral ischemia or

®

3 h after reperfusion in rats, which may partly result from the
disruption of postsynaptic density protein 95 (PSD95)-NO
production by activating neuronal NO synthase (nNOS)
interaction, leading to the inhibition of neurotoxic NO pro-
duction °".

HK can dilate blood vessels, which may be achieved
through inhibiting the RhoA/Rho-kinase signaling path-
way > *. HK inhibits vascular contraction in response to
U46619 and sodium fluoride by inhibiting the activation of
RhoA and the subsequent phosphorylation of myosin phos-
phatase targeting subunit 1 (MYPT1) PKC-potentiated inhib-
itory protein for heterotrimeric myosin light-chain phosphata-
se of 17 kDa (CPI17), and the phosphorylation of 20 kDa my-
osin light chains (MLC,) ", Long-term administration of
HK to spontaneously hypertensive rats (SHR) decreased
systolic blood pressure through increasing NO produc-
tion P With the release of NO, HK inhibits platelet aggrega-
tion and thus suppresses arterial thrombosis ™
sclerosis, HK effectively suppressed TNF-a-induced cell mi-
gration and MMP expression in rat aortic smooth muscle
cells through inhibition of the ERK/NF-kB pathway .

In terms of cardiovascular diseases, HK can relieve
myocardial ischemia/reperfusion injury, lower blood pres-
sure, and produce anti-atherosclerosis effects.

Anti-diabetes and anti-obesity

Houpo is reported to have hypoglycemic effect and com-

monly prescribed for the treatment of diabetes, such as

! For athero-

Houpo-sanwu-tang. As the major ingredient, HK has attrac-
ted increasing attentions as a potential anti-diabetic drug ©°.
Diabetic complications (such as diabetic nephropathy, liver
disease, cardiomyopathy and other cardiovascular diseases)
are very harmful to the human body and even lead to death.
Oxidative stress and inflammation play important roles in the
pathogenesis of diabetes complications . In light of anti-in-
flammatory and anti-oxidative properties, HK has high poten-
tial in the treatment of diabetes. HK acts as a potent ROS
scavenger via the Nrf2/ARE pathway, so as to effectively at-
tenuate oxidative stress and improve pancreatic S cell func-
tion of DM rats under HG and intermittent hypoxia (IH) treat-
ment ¥, In murine 3T3-F442A adipocytes, HK induces the 2-
deoxy-2-[(7-nitro-2, 1, 3-benzoxadiazol-4-yl)amino]-D-gluc-
ose (2-NBDG) uptake by 50% under insulin stimulation and
these changes were abolished by selective inhibitors of the in-
sulin signaling pathway, which suggests that HK stimulates
glucose uptake in insulin-sensitive adipocytes by activating
the insulin signaling pathway . The agonists of the nuclear
receptor PPAR-y are used to treat hyperglycemia in patients
with metabolic syndrome or type 2 diabetes . According to
computer simulation, HK does directly bind to the purified
PPAR-y ligand binding domain and act as a partial agoni-
st ®” %1 Oral administration of HK lowers blood sugar level
and suppresses weight gain in diabetic KKAy mice .
Adipocytes are considered to be the main drug target in
the treatment of obesity and obesity-mediated metabolic syn-
drome. By increasing the expression of PPARc2 mRNA and
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enhancing the insulin signaling pathways such as
Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/protein
kinase B (Akt), HK promotes adipocyte differentiation and
induces large adipocytes apoptosis /. Through the activa-
tion of ERK, HK induces adipocyte browning by elevating
the levels of brown adipocyte-specific genes such as cell
death-inducing DFFA-like effector a (Cidea), cytochrome ¢
oxidase subunit8 (Cox8), fibroblast growth factor21 (FGF21),
PGC-1a, and uncoupling protein 1 (UCP1). HK promotes the
apoptosis of 3T3-L1 white adipocytes and inhibits the apop-
tosis of HIB1B brown adipocytes through reverse regulation
of the pro-apoptotic protein B-cell lymphoma-2-associated X
protein (BAX) and anti-apoptotic protein B-cell lymphoma
(Bel)-2 . These results indicate the potential of HK as an
anti-obesity agent. It was also reported that HK lowered the
weight of white adipose tissue (WAT), decreased adipocyte
size and protected against insulin resistance in high-fat diet
(HFD)-fed mice ). Through regulating the balance of WAT
and brown adipose tissue (BAT), HK effectively improves
obesity.
Anti-tumor

Due to their efficacy and safety, herbal medicines are
widely used in cancer treatment. Many anti-cancer drugs
have been found from herbal medicines, such as maytansine,
taxol and triptolide. In traditional Chinese medicine, Houpo is
used to remove dampness and reduce phlegm, which indic-
ates its potential to treat tumors. HK is reported to have thera-
peutic effects on many cancers, including skin cancer 64, 651
[66, 67]

[70]

[69]
2

68
breast cancer , esophageal cancer ', prostate cancer

. 1 . 72
, ovarian cancer ", brain cancer "?, lung
[74]

gastric cancer
cancer !, and liver cancer

Tumor growth is inseparable from the material supply of
blood vessels, and abnormal structure and function of blood
vessels will promote tumor deterioration V). Therefore, the
level of vascular endothelial growth factor (VEGF) in serum
is closely associated with tumor growth and serves as a mark-
er of cancer diagnosis "%\, Blocking VEGF expression inhib-
its tumor growth and prevents metastasis U". HK is reported
to inhibit tumor angiogenesis. HK decreases hypoxia-indu-
cible-factor (HIF)-mediated expression of pro-angiogenic
genes under hypoxic conditions ™. The activation, prolifera-
tion, invasion, migration, and tube formation of endothelial
cells (ECs) are the fundamental steps for angiogenesis I”.
HK inhibits the vascular formation of mouse embryonic stem
(mES) cells on 3-D collagen gel and decreases the expres-
sion of endothelial biomarkers VEGF receptors (VEGFR)2
and platelet endothelial cell adhesion molecule (PECAM) in
the differentiated embryoid body-derived endothelial cells
through blocking the mitogen-activated protein kinase
(MAPK)/mammalian target of rapamycin (mTOR) signaling
pathways ™.

Several proteins function as the potential targets for the
anti-tumor effect of HK. HK blocks signaling in p53 defect-
ive tumors and activates ras through directly blocking the ac-
tivation of phospholipase D ®"**. In addition, HK causes the

®

death of wild-type p53 cells by inducing cyclophilin D to en-
hance the mitochondrial permeability transition pore. In
MDA-MB-231 human breast cancer cells, HK exerted anti-
proliferative activity with the cell cycle arrest at the Gy/G,
phase and sequential induction of apoptotic cell death by
down-regulating the activation of the c-Src/epidermal growth
factor receptor (EGFR)-mediated signaling pathway "1,

Till now, most of the studies have been conducted on
cancer cells, and there is a lack of clinical data. In addition,
tumor treatment usually requires high selectivity. The clinic-
al application of HK urgently requires more research on tar-
geted preparations.

Clinical Trials of HK

There are a few clinical trials related to HK. The effects
of proprietary substitutes of Magnolia Bark and Phelloden-
dron Bark Extract (Relora®) on worries, stress and sleep in
healthy premenopausal women have been evaluated, which
demonstrates that Relora can relieve mild transient anxiety in
premenopausal women **. Another study found that during a
six-month period of use, men who used a dentifrice contain-
ing 0.3% Magnolia extract significantly improved gingivitis
than the control group ™. Two studies indirectly revealed
HK’s great potential in anti-inflammatory and anti-anxiety.

Conclusion

In summary, recent studies have confirmed that HK is a
pleiotropic compound, suggesting it functions through a num-
ber of pathways, with great clinical potential (Fig. 3). The
broad pharmacological activity of HK may be related to its
numerous metabolites in vivo ™). Because of its physical
properties, HK can readily cross the BBB and the BCFB. As
a result, HK is a potent candidate with high bioavailability.
However, we must recognize the following points: 1) Al-
though HK has been identified to modulate many targets, its
anti-oxidative property is the most fundamental pharmacolo-
gical basis. 2) For practical clinical applications, it is of great
significance to develop highly selective targeted preparations
of HK. 3) The current pharmacological research on HK is
still based on pre-clinical studies, which is still difficult to de-
termine the actual action and mechanism of HK in the hu-
man body, thus many of its pharmacological effects need to
be further verified by random and controlled clinical trials
with large-scale samples. 4) Like many herbal ingredients,
evidence-based medicine should be used as a guide to estab-
lish a complete drug quality control system to ensure the
quality and safety of drugs. Precision medicine advances rap-
idly, so more pharmaceutical studies should be carried out to
develop highly selective targeted preparations of HK and en-
hance the oral bioavailability of HK. On the other hand, more
pharmacological studies are needed to identify and verify the
direct targets of HK, which may facilitate the structure optim-
ization of HK and even its clinical application. Till now, no
clinical trial was performed on HK alone, but as an ingredi-
ent of herbal medicine extract. Therefore, more in-depth re-
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Fig. 3 A summary of the pharmacological activities and the underlying mechanisms of HK

search and clinical trials on HK are necessary for its future
clinical application.
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