• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Bufalin-induced cardiotoxicity: new findings into mechanisms

  • Abstract: Bufalin is one of the main pharmacological and toxicological components of Venenum Bufonis and many traditional Chinese medicine preparations. The cardiotoxicity clearly limits its application to patients living in countries. Hence, an investigation of its toxicological mechanism is helpful for new drug development and treatment of the related clinical adverse reactions. We investigate the cardiotoxicity of bufalin using human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) (0.003–0.1 μmol·L1), human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) (0.03–0.3 μmol·L1) and eight human cardiac ion channel currents (0.01–100 μmol·L1) combined with an impedance-based bioanalytical and patch clamp method. Biphasic effect of bufalin on the contractility in hiPSC-CMs, which has been shown to strengthen myocardial contractility, accelerate conduction, and increase beating rate at the earlier stage of administration, whereas weakened myocardial contractility, abolished conduction, and ceased beating rate at the later stage of administration. Bufalin decreased the action potential duration (Action potential duration at 30%, 50% and 90% repolarization), cardiac action potential amplitude, and maximal depolarization rate and depolarized the resting membrane potential of hiPSC-CMs. Spontaneous beating rates of hiPSC-CMs were markedly increased at 0.03 μmol·L1, while were weakened at 0.3 μmol·L1 after application. Bufalin blocks INav1.5 in a concentration-dependent manner with half maximal inhibitory concentration of 74.5 μmol·L1. Bufalin respectively increased the late sodium current and Na+-Ca2+ exchange current with a concentration for 50% of maximal effect of 2.48 and 66.06 μmol·L1 in hiPSC-CMs. Whereas, bufalin showed no significant effects on other cardiac ion channel currents. The enhancement of the late sodium current is one of the main mechanism for cardiotoxicity of bufalin.

     

/

返回文章
返回