Bear bile powder alleviates Parkinson’s disease–like behavior in mice by inhibiting astrocyte-mediated neuroinflammation
Lupeng WANG, Yuyan BAI, Yanlin TAO, Wei SHEN, Houyuan ZHOU, Yixin HE, Hui WU, Fei HUANG, Hailian SHI, Xiaojun WU

View online: https://doi.org/10.1016/S1875-5364(23)60449-2

Related articles that may interest you

Bear bile powder attenuates senecionine–induced hepatic sinusoidal obstruction syndrome in mice

Demethylenetetrahydroberberine protects dopaminergic neurons in a mouse model of Parkinson’s disease

Danshen–Chuanxiongqin Injection attenuates cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/TLR4–MyD88–NF–κB Pathway in tMCAO mice

Mangiferin inhibited neuroinflammation through regulating microglial polarization and suppressing NF–κB, NLRP3 pathway

Screening of the ubiquitin–proteasome system activators for anti-Alzheimer’s disease by the high–content fluorescence imaging system

Silybin alleviates hepatic lipid accumulation in methionine–choline deficient diet–induced nonalcoholic fatty liver disease in mice via peroxisome proliferator–activated receptor α
Bear bile powder alleviates Parkinson’s disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation

WANG Lupeng A, BAI Yuyan A, TAO Yanlin, SHEN Wei, ZHOU Houyuan, HE Yixin, WU Hui, HUANG Fei, SHI Hailian, WU Xiaojun*

Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Available online 20 Sep., 2023

[ABSTRACT] Parkinson’s disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg−1) for five days, followed by BBP (50, 100, and 200 mg·kg−1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. The results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-xB (NF-xB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.

[KEY WORDS] Parkinson’s disease; Bear bile powder; Astrocyte; Neuroinflammation; Takeda G protein-coupled receptor 5

[Introduction] Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease (AD) [1]. The pathogenesis of PD is thought to result from the degeneration and necrosis of dopaminergic neurons in the substantia nigra (SN) and the significant reduction of dopamine in the striatum, accompanied by bradykinesia, myotonia, static tremor and postural reflex disorder [2, 3]. The prevalence of PD is 2%–3% in the elderly over 65 years old, and increases with age, posing a heavy burden on the families and society [4]. Nowadays, the pathogenesis of PD is still unclear, and the treatment regimens are limited, which improve symptoms, but can not prevent the development of the disease, let alone cure it [5]. Therefore, it is urgent to search for new safe and effective therapeutic agents.

Neuroinflammation has been implicated to play an important role in PD pathogenesis [6]. Studies showed that both PD patients and PD animal models induced by overexpression of α-synuclein (α-syn), 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) manifested excessive gliosis and significant inflammatory responses in the brain [7-11]. Previously, microglia was con-
considered as the primary inflammatory cells in the central nervous system (CNS). In contrast, the inflammatory activation of astrocytes is generally more persistent and thought to be more important in the neuroinflammation of PD [10]. Over-activation of astrocytes reduced the secretion of neurotrophic factors and promoted the secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), leading to the damage of dopaminergic neurons [13]. Many treatments have been reported to attenuate PD progression by targeting the suppression of astrocyte activation. For instance, caffeine acid alleviated dopaminergic neuron damage in PD mice by inhibiting the release of inflammatory cytokines in astrocytes [14]. Dextrometomidine (DEX) suppressed astrocyte activation via the AMPK/NF-κB pathway and improved dyskinesia in PD mice [13]. Glucagon like peptide-1 receptor agonist effectively prevented abnormal astrocyte lesions and relieved the symptoms of PD model mice [16]. These findings indicate that neuroinflammation mediated by astrocytes is indeed involved in the development of PD.

Bile acids play anti-inflammatory effect and perform immune and nutrient metabolism regulatory roles mainly through binding to bile acid membrane receptor (takeda G protein-coupled receptor 5, TGR5) and nuclear receptor (farnesoid X receptor, FXR) [17]. FXR is mainly expressed in the liver, intestine, kidneys and central neurons, and involved in the synthesis of bile acids, which regulates the metabolism of glycolipids by controlling the enterohepatic circulation of bile acids [18]. TGR5 is distributed in a variety of tissues and cells, including the liver, ileum, colon, central neurons, microglia and astrocytes [19, 20]. TGR5 has various cellular biological functions after activation, such as regulating energy balance, improving insulin resistance, anti-atherosclerosis, and anti-inflammation [21, 22]. TGR5 activation promoted cAMP generation and inhibited NF-κB activation via the CAMPPKA pathway [23]. In addition, it reduced the expression of chemokines via the AKT-mTOR signaling pathway, thus inhibiting inflammatory reaction and improving insulin resistance [24]. TGR5 agonist inhibited myeloid cell activation and attenuated experimental autoimmune encephalomyelitis in mice [25]. Therefore, TGR5 may be a proper target for the treatment of inflammation and inflammatory-related diseases.

Bear bile powder (BBP) is a dry powder collected from bear gall bladder bile, which has multiple pharmacological activities, such as anti-inflammatory, antispasmodic, tumor suppressive, lipid regulatory and microcirculation promotive effects [26-28]. The main components of BBP are taurochenodeoxycholic acid (TCDCA) and tauroursodeoxycholic acid (TUDCA), both of which can significantly activate TGR5 [29, 30]. TCDCA played a vital role in cell apoptosis, immune response and inflammation by activating TGR5 [29]. In contrast, TUDCA ameliorated LPS-induced cognitive dysfunction in mice by inhibiting the NF-κB pathway [31]. In addition, BBP alleviated liver injury by reducing liver inflammation and attenuated febrile epilepsy by regulating neurotransmitters and inhibiting neuroinflammation [32, 33]. Recent research also showed that BBP exerts anti-inflammatory effect by activating TGR5 both in vivo and in vitro [34]. However, it is still unknown whether BBP can affect the activation of astrocytes via TGR5 and thus prevent the development of PD. In the present study, we investigated the protective effect of BBP on PD mice and explored its mechanism from the perspective of inhibiting astrocyte-mediated neuroinflammation. This study may provide evidence for the clinical application of BBP in PD.

Materials and Methods

Reagents

BBP (Cat No. Z10980057) was purchased from Heilongjiang Heibao Pharmaceutical Co., Ltd. (Haerbin, China), which mainly contains six bile acid components: TCDCA (23.3%), TUDCA (23.1%), ursodeoxycholic acid (UDCA, 0.2%), taurohypoxycholic acid (THDCA, 11.1%), hyodeoxycholic acid (HDCA, 1.4%), and taurocholic acid (TCA, 1.2%). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, Cat No. MB3783), lipopolysaccharide (LPS, Cat No. MB5198), minocycline (MC, Cat No. MB1477), triamterene (Cat No. MB2034) and dexamethasone (DEX) (Cat No. MB1434) were purchased from Dalian Meilun Biotechnology Co., Ltd. (Dalian, China). Antibodies against TH (Cat No. Ab75875), IBA1 (Cat No. Ab178846), GFAP (Cat No. Ab4648), iNOS (Cat No. ab15323) and TGR5 (Cat No. ab72608) were bought from Abcam (CB, UK). Antibodies against β-actin (Cat No. 12413), GAPDH (Cat No. 5174), Cox2 (Cat No. 1282S), AKT (Cat No. 46855), p-AKT (Cat No. 9271S), IxBu (Cat No. 44D4), p-IxB (Cat No. 2859S), NF-κB (Cat No. 8242S), and p-NF-κB (Cat No. 3033L) were bought from Cell Signal Technology (MA, USA). PCR primers including GAPDH, GFAP, COX2, iNOS, IL-1β, IL-6 and TNF-α were provided by Shanghai Jierui Biological Engineering Co., Ltd. (Shanghai, China).

Animals and drug treatment

Male C57BL/6 mice, 10–12 weeks old and 28–30 g in weight, were obtained from the Animal Experimental Center of Shanghai University of Traditional Chinese Medicine (Shanghai, China). All the mice were kept under 40%–60% humidity in a 12 h dark/light cycle at 25 ± 2 °C. After acclimation for two weeks, the mice were randomly divided into six groups according to the experimental requirements: a control group, a MPTP group, a positive drug group (minocycline, 50 mg·kg⁻¹) and MPTP + BBP (50, 100, and 200 mg·kg⁻¹) groups. The control group was intraperitoneally injected with normal saline, while the other groups were intraperitoneally injected with MPTP (30 mg·kg⁻¹) for five consecutive days to establish a subacute PD mouse model [35]. On day 6, the mice in the treatment groups were given minocycline and BBP (50, 100, and 200 mg·kg⁻¹) daily, while the other mice received normal saline. Behavioral tests including the pole test and the open field test were performed after 10 days of administration. At the end of the experiments, the mice
were anesthetized and sacrificed to obtain the brain tissues including the substantia nigra for further analysis. All the drugs were dissolved with normal saline. The animal experiments were conducted according to a protocol approved by the University Animal Care and Use Committee of SHUTCM (Ethics number: PZSHUTCM2212050002).

Behavioral tests

The motor ability of mice was evaluated by the open field test \([35]\). First, the mice were kept in the experimental environment to adapt for 1–2 h. Then, the mice were individually placed in a central area at the bottom of an open field (50 cm × 50 cm × 50 cm). The motion track of the mice was continuously collected by a video tracking system. Their motor ability was evaluated based on the total movement distance within 5 min.

Motor impairment in mice was assessed by the pole test \([36]\). Briefly, a pole with a diameter of 1 cm and a length of 50 cm was fixed to the ground, and a small ball was installed on the top of the pole. Both the pole and the ball were covered with a gauze to prevent the mice from slipping. Before the experiment, all the mice were trained to climb the pole. After adaptive training, the mice were placed on the ball and the total time spent by each mouse from the ball to the base of the pole was recorded. Each mouse was tested for three times with an interval of more than 1 h.

Cell culture and treatment

Rat C6 astrocytic cells were provided by the Type Culture Collection of Chinese Academy of Sciences (Shanghai, China). Dulbecco’s modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS) was used to culture the cells at 37 °C with 5% CO\(_2\). C6 cells were starved with serum-free DMEM for 24 h and seeded in a 96-well culture plate at a density of 1.5 × 10\(^4\) cells/mL. Next day, the cells were first treated with BBP (25, 50 and 100 μg·mL\(^{-1}\)) and DEX (1 μmol·L\(^{-1}\)) or BBP (100 μg·mL\(^{-1}\)), BBP (100 μg·mL\(^{-1}\)) + triamterene (20 μmol·L\(^{-1}\)) and triamterene (20 μmol·L\(^{-1}\)) for 2 h, followed by induction with 1 μg·mL\(^{-1}\) LPS for 6 h. The cells were fixed with 4% paraformaldehyde, penetrated with PBS containing 0.3% Triton X-100, blocked in 5% donkey serum and incubated with NF-κB primary antibody (1 : 300) at 4 °C. Next day, the fluorescent secondary antibody conjugated with Alexa-594 (Invitrogen, cat: A32754) was used to incubate the cells. The nuclei were stained with DAPI. Photographs were taken by a fluorescence microscope.

Real-time PCR

The total RNA of C6 cells was extracted by Trizol method. RNA concentrations were determined by Nano Drop. The resultant RNA was reversely transcribed into cDNA on PCR instrument. Taqman SYBR kit (Q511-02, Vazyme, China) was used to perform real-time PCR, and the obtained mRNA expression was quantified by the delta-delta Ct approach. The primer sequences used are listed in Table 1.

Table 1 Sequences of primers for PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence 5'-3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat-COX2</td>
<td>F: TCAACACACTCTATCACCTGOC</td>
</tr>
<tr>
<td></td>
<td>R: AGAGGCGTGGGCACTCAT</td>
</tr>
<tr>
<td>Rat-GAPDH</td>
<td>F: TGTGAACGGATTTGGCCTTA</td>
</tr>
<tr>
<td></td>
<td>R: TGAACTTGCGTCGGTAGAG</td>
</tr>
<tr>
<td>Rat-IL-1β</td>
<td>F: CACCTCTCAAGCACAGACAG</td>
</tr>
<tr>
<td></td>
<td>R: GGTTCCATGGTAAGCTAAC</td>
</tr>
<tr>
<td>Rat-GFAP</td>
<td>F: TGGGCACGATTCAATGCAA</td>
</tr>
<tr>
<td></td>
<td>R: ACTCAAGGTCGAGTGGCAG</td>
</tr>
<tr>
<td>Rat-IL-6</td>
<td>F: TAGTCTTCCTACCCCAACTTCC</td>
</tr>
<tr>
<td></td>
<td>R: TTGGTCTTGGCAATCCTTCC</td>
</tr>
<tr>
<td>Rat-iNOS</td>
<td>F: AGCATCACCCCCCTGGTGTTCACC</td>
</tr>
<tr>
<td></td>
<td>R: TGGGCGACTGTCCTATTGCA</td>
</tr>
<tr>
<td>Rat-TNF-α</td>
<td>F: CTGAACTTCGGGGTGATCGG</td>
</tr>
<tr>
<td></td>
<td>R: GGCTTGTCACTCGAGTTTGGAA</td>
</tr>
</tbody>
</table>

TGR5 luciferase assay

HEK293T cells were seeded in 96-well culture plates. After overnight culture, the cells were co-transfected with pCRE-luc, pCMV-TGR5 and Renilla plasmids as previously described \([37]\). One day after transfection, the cells were exposed to BBP (25, 50 and 100 μg·mL\(^{-1}\)) and INT-777 (0.5 μmol·L\(^{-1}\)), according to the experimental requirements. After treatment for 5 h, TGR5-luciferase activity was measured using Dual Luciferase Reporter Gene Assay kit (Meilun, Dalian, China) by a multifunctional microplate reader.

Western blot analysis

RIPA lysis buffer containing phosphatase and protease inhibitors was used for extracting the total protein of mouse SN tissues and C6 cells. Then, the supernatant was used for the determination of protein concentrations by BCA method. The proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto PVDF membrane. To inhibit nonspecific binding, 5% skim milk was used to block the membrane. The target bands were incubated with primary antibodies against TH (1 : 1000), iNOS (1 : 1000), GFAP (1 : 3000), COX2 (1 : 1000), AKT (1 : 1000), p-AKT (1 : 1000), iNOS (1 : 1000), p-iNOS (1 : 1000), p-NF-κB (1 : 1000), β-actin (1 : 5000) and TGR5 (1 : 1000) at 4 °C overnight. Next day, the secondary antibodies of the corresponding species were used to incubate the target bands at room temperature. The ECL luminescent solution was used to visualize the target proteins. Moreover, the gel imaging system was applied to take photographs, and the gray intensity was calculated by Image Pro Plus 6.0.
Immunohistochemistry (IHC)

After anesthesia, the mice were perfused with normal saline and 4% PFA. Mouse brain was removed, fixed with 4% PFA for 24 h, and dehydrated with 10% and 30% sucrose solution for 24 h, before embedded with OCT. Coronal brain sections at 20 μm thickness were obtained and washed with PBS. After penetrated with 0.3% Triton X-100 for half an hour, the sections were blocked with 5% donkey serum for 1 h and incubated with the mixture of GFAP and TH primary antibodies at 4 °C. Next day, the sections were incubated with fluorescent secondary antibody conjugated with Alexa 488 (Invitrogen, cat: A21208) at room temperature for 1 h. After incubation, the nuclei were stained with DAPI and the sections were sealed. The fluorescent images were obtained by an inverted fluorescence microscope.

The target region of SN was defined according to the brain map of mice. Three non-overlapping fields were randomly selected for cell counting under the microscope at ×200 magnification, where positive cells outside the focal plane were not included in the count. The average number of positive cells in the three fields was regarded as the number of positive cells in the sample [38]. All the slides were scanned and analyzed using an inverted fluorescent microscope (Olympus IX 81, Japan). The number of positive cells for each sample was calculated by Image Pro Plus 6.0 and analyzed by the normalization method (fold/control).

Statistical analysis

Data were analyzed by GraphPad Prism 7 software and are expressed as mean ± SEM. The One-way ANOVA with Dunnett’s post hoc test was used to compare the differences among multiple groups. $P < 0.05$ was considered statistically significant.

Results

BBP improves motor deficits and dopaminergic neurodegeneration in MPTP-induced mice

To evaluate the neuroprotective effect of BBP on MPTP-induced mice, BBP treatment was started five days after MPTP induction. As shown in Figs. 1A−1E, MPTP-induced mice spent much more time to climb down the pole in the
pole test ($P < 0.05$). MPTP induction significantly reduced the total travel distance of mice in the open field test ($P < 0.001$). In addition, MPTP induction significantly reduced the levels of TH protein and the number of TH positive cells in mouse SN ($P < 0.01$, $P < 0.001$). Compared with MPTP, BBP (100 and 200 mg·kg$^{-1}$) and MC (50 mg·kg$^{-1}$) treatments remarkably shortened the time of climbing down by the mice ($P < 0.05$). BBP (100, 200 mg·kg$^{-1}$) and MC treatments greatly increased the total travel distance of the mice, as well as the levels of TH and the number of TH positive cells in the SN ($P < 0.01$ or $P < 0.001$). Collectively, these findings suggest that BBP treatment ameliorates MPTP-induced motor dysfunction and dopaminergic neurodegeneration in mice.

BBP suppresses astrocytic inflammation and modulates the TGR5/AKT/NF-κB signaling pathway in the SN of MPTP-induced mice

Astrocytes are the key regulators of neuroinflammation, and up-regulation of astrocyte marker GFAP expression is a typical indicator of CNS diseases [39]. As shown in Figs. 2A–2C, 3A–3B and Supplementary Fig. 1, the number of GFAP positive cells and the levels of GFAP, IBA1, iNOS and COX2 proteins significantly increased in the SN of MPTP-induced mice ($P < 0.01$ or $P < 0.001$), compared with the control group. The levels of TGR5 protein were significantly reduced ($P < 0.01$). Meanwhile, the phosphorylation of

Fig. 2 BBP reduces the number of GFAP positive cells in the SN of MPTP-induced mice. (A–B) Representative immunofluorescence staining for GFAP and GFAP-positive cell counts in the SN. (C) Protein expression of GFAP in the SN. Scale bar: 50 μm. Data are expressed as the mean ± SEM (n = 4). ***$P < 0.001$ vs the control group; **$P < 0.01$; ***$P < 0.001$ vs the MPTP group.
AKT, IxBα and NF-κB were markedly up-regulated (P < 0.05, P < 0.01 or P < 0.001). In contrast, both BBP (100 and 200 mg·kg⁻¹) and MC (50 mg·kg⁻¹) treatments considerably decreased the number of GFAP positive cells and the levels of GFAP, IBA1, iNOS and COX2 proteins (P < 0.05, P < 0.01 or P < 0.001). BBP (100 and 200 mg·kg⁻¹) treatment markedly prevented the reduction of TGR5 protein induced by MPTP in mice (P < 0.05). In addition, both BBP and MC treatments greatly lessened the phosphorylation of AKT, IxBα and NF-κB (P < 0.05, P < 0.01 or P < 0.001).

BBP attenuates inflammation in LPS-induced C6 cells

As shown in Figs. 4A–4B, the cell viability of C6 cells treated with BBP for 24 h did not significantly change. Meanwhile, both BBP (25, 50, and 100 μg·mL⁻¹) and DEX (1 μmol·L⁻¹) did not affect the cell viability of C6 cells stimulated by LPS. Compared with the control group, the release of NO in LPS-stimulated C6 cells was markedly elevated (Fig. 4C, P < 0.001). Furthermore, the protein levels of GFAP, iNOS and COX2, and the mRNA levels of GFAP, iNOS, COX2, IL-1β, IL-6 and TNF-α (P < 0.05, P < 0.01 or P < 0.001) treatments significantly stimulated the activation of TGR5 (Fig. 5A, P < 0.01 or P < 0.001). As shown in Fig. 5B, LPS stimulation greatly promoted the nuclear translocation of NF-κB in C6 cells, while BBP and DEX pretreatments noticeably prevented the nuclear translocation of NF-κB. Moreover, LPS treatment greatly enhanced the phosphorylation of AKT, IxBα and NF-κB proteins in C6 cells (Fig. 5D, P < 0.01 or P < 0.001). In contrast, pretreatment with BBP and DEX prevented the increased phosphorylation of AKT, IxBα and NF-κB proteins (P < 0.05 or P < 0.01). However, the changes of TGR5 protein level in C6 cells treated by LPS were not obvious, nor was the change of TGR5 protein level in LPS-treated C6 cells when BBP was added (Fig. 5C).

BBP suppresses inflammation in the SN of MPTP-induced mice via the TGR5/AKT/NF-κB signaling pathway. (A) Protein expression of iNOS and COX2 in the SN. (B) Protein expression of TGR5, phosphorylated AKT, IxBα and NF-κB. Data are expressed as the mean ± SEM (n = 4). *P < 0.05, **P < 0.01, ***P < 0.001 vs the control group; †P < 0.05, ‡P < 0.01, §§P < 0.001 vs the MPTP group.
BBP decreases LPS-induced inflammation in C6 cells. (A) Cell viability of C6 cells treated with BBP at different doses (25, 50, and 100 μg·mL⁻¹) for 24 h. (B) Cell viability of C6 cells treated with LPS (1 μg·mL⁻¹) and BBP at different doses (25, 50, and 100 μg·mL⁻¹) for 24 h. (C) NO production by the cells. (D) Protein expression of GFAP, COX2, and iNOS. (E) mRNA expression of GFAP, COX2, and iNOS. (F) mRNA expression of IL-1β, IL-6, and TNF-α. Data are expressed as the mean ± SEM (n = 4). *P < 0.05, **P < 0.01, ***P < 0.001 vs the control group.

To further understand the anti-inflammatory mechanism of BBP, triamterene, an inhibitor of TGR5, was used to test whether BBP attenuated LPS-induced astrocytic inflammation via TGR5. As shown in Figs. 6A–6C, addition of triamterene to C6 cells induced by LPS markedly increased the release of NO, the levels of iNOS and COX2 proteins, and the phosphorylation of AKT, IκBα, and NF-κB (P < 0.05, P < 0.01 or P < 0.001). Compared with the LPS + BBP group, tria-
amterene strikingly attenuated the effect of BBP treatment on reducing the release of NO (P < 0.01). Meanwhile, the effect of BBP treatment on reducing the protein levels of iNOS and COX2 and the phosphorylation of AKT, IκBα and NF-κB proteins were also significantly weakened by triamterene (P < 0.05). These findings implicate that BBP inhibits astrocytic neuroinflammation via the TGR5-mediated signaling pathway.

Discussion

Neuroinflammation is a major feature of various neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer’s disease (AD), Huntington’s disease (HD) and Parkinson’s disease (PD) [41]. More and more studies have shown that inhibiting neuroinflammation can alleviate the symptoms of PD. For example, curcumin ameliorated motor deficits and neuroinflammation in PD mice [42]. Shikonin improved the apoptosis of dopaminergic neurons in the animal models of PD by inhibiting neuroinflammation [43]. Catechin and quercetin reduced nerve damage in experimental PD rats by regulating inflammation [44]. Neuroinflammation caused by activation of astrocytes has been revealed to promote the development of PD [45]. In the present study, BBP ameliorated dyskinesia, suppressed astrocyte activation, and inhibited the expression of GFAP, iNOS and COX2 proteins in PD mice. In addition, BBP showed similar anti-neuroinflammatory effect on LPS-induced C6 cells. These findings indicate that BBP plays an anti-neuroinflammatory role in vitro and in vivo, and provides evidence for the use of BBP in the treatment of PD.

As a nuclear transcription factor, NF-κB can initiate and regulate a variety of inflammatory processes in glial cells and plays an indispensable role in neurodegenerative diseases [46]. Activation of the NF-κB signaling pathway can induce the activation of astrocytes and up-regulate the expression of inflammatory cytokines [47]. Overexpression of aquaporin 2 activated rat astrocytes via the NFκB signaling pathway and released a large number of pro-inflammatory cytokines, which then aggravated inflammatory response after intracerebral hemorrhage [48]. Curcumin and NF-κB p65 siRNA suppressed astrocytes activation by inhibiting the NFκB signaling pathway and alleviated spinal cord injury in rats [49]. AKT promoted the phosphorylation of IκBα through activation of the IκB kinase complex (IKK), leading to the dissociation of proteins were also significantly weakened by triamterene (P < 0.01). Meanwhile, the effect of BBP treatment on reducing the release of NO (P < 0.01). Meanwhile, the effect of BBP treatment on reducing the protein levels of iNOS and COX2 and the phosphorylation of AKT, IκBα and NF-κB proteins were also significantly weakened by triamterene (P < 0.05). These findings implicate that BBP inhibits astrocytic neuroinflammation via the TGR5-mediated signaling pathway.

Discussion

Neuroinflammation is a major feature of various neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer’s disease (AD), Huntington’s disease (HD) and Parkinson’s disease (PD) [41]. More and more studies have shown that inhibiting neuroinflammation can alleviate the symptoms of PD. For example, curcumin ameliorated motor deficits and neuroinflammation in PD mice [42]. Shikonin improved the apoptosis of dopaminergic neurons in the animal models of PD by inhibiting neuroinflammation [43]. Catechin and quercetin reduced nerve damage in experimental PD rats by regulating inflammation [44]. Neuroinflammation caused by activation of astrocytes has been revealed to promote the development of PD [45]. In the present study, BBP ameliorated dyskinesia, suppressed astrocyte activation, and inhibited the expression of GFAP, iNOS and COX2 proteins in PD mice. In addition, BBP showed similar anti-neuroinflammatory effect on LPS-induced C6 cells. These findings indicate that BBP plays an anti-neuroinflammatory role in vitro and in vivo, and provides evidence for the use of BBP in the treatment of PD.

As a nuclear transcription factor, NF-κB can initiate and regulate a variety of inflammatory processes in glial cells and plays an indispensable role in neurodegenerative diseases [46]. Activation of the NF-κB signaling pathway can induce the activation of astrocytes and up-regulate the expression of inflammatory cytokines [47]. Overexpression of aquaporin 2 activated rat astrocytes via the NFκB signaling pathway and released a large number of pro-inflammatory cytokines, which then aggravated inflammatory response after intracerebral hemorrhage [48]. Curcumin and NF-κB p65 siRNA suppressed astrocytes activation by inhibiting the NFκB signaling pathway and alleviated spinal cord injury in rats [49]. AKT promoted the phosphorylation of IκBα through activation of the IκB kinase complex (IKK), leading to the dissociation of proteins were also significantly weakened by triamterene (P < 0.01). Meanwhile, the effect of BBP treatment on reducing the release of NO (P < 0.01). Meanwhile, the effect of BBP treatment on reducing the protein levels of iNOS and COX2 and the phosphorylation of AKT, IκBα and NF-κB proteins were also significantly weakened by triamterene (P < 0.05). These findings implicate that BBP inhibits astrocytic neuroinflammation via the TGR5-mediated signaling pathway.

Fig. 5 BBP inhibits the TGR5/AKT/NF-κB signaling pathway in LPS-treated C6 cells. (A) Activation of TGR5 stimulated by BBP. Untreated HEK 293T cells were used as the negative control, and INT-777 (0.5 μmol·L^{−1}) was used as the positive control. (B) Representative images of NF-κB (red) staining in C6 cells induced by LPS. The nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI, blue). (C) Protein expression of TGR5. (D) Protein expression of phosphorylated AKT, IκBα and NF-κB via the TGR5-mediated signaling pathway. (E) Western blotting showed the relative gray intensity of TGR5, p-AKT, IκBα and NF-κB in LPS-treated C6 cells. These findings indicate that BBP plays an anti-neuroinflammatory role in vitro and in vivo, and provides evidence for the use of BBP in the treatment of PD.

Discussion

Neuroinflammation is a major feature of various neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer’s disease (AD), Huntington’s disease (HD) and Parkinson’s disease (PD) [41]. More and more studies have shown that inhibiting neuroinflammation can alleviate the symptoms of PD. For example, curcumin ameliorated motor deficits and neuroinflammation in PD mice [42]. Shikonin improved the apoptosis of dopaminergic neurons in the animal models of PD by inhibiting neuroinflammation [43]. Catechin and quercetin reduced nerve damage in experimental PD rats by regulating inflammation [44]. Neuroinflammation caused by activation of astrocytes has been revealed to promote the development of PD [45]. In the present study, BBP ameliorated dyskinesia, suppressed astrocyte activation, and inhibited the expression of GFAP, iNOS and COX2 proteins in PD mice. In addition, BBP showed similar anti-neuroinflammatory effect on LPS-induced C6 cells. These findings indicate that BBP plays an anti-neuroinflammatory role in vitro and in vivo, and provides evidence for the use of BBP in the treatment of PD.

As a nuclear transcription factor, NF-κB can initiate and regulate a variety of inflammatory processes in glial cells and plays an indispensable role in neurodegenerative diseases [46]. Activation of the NF-κB signaling pathway can induce the activation of astrocytes and up-regulate the expression of inflammatory cytokines [47]. Overexpression of aquaporin 2 activated rat astrocytes via the NFκB signaling pathway and released a large number of pro-inflammatory cytokines, which then aggravated inflammatory response after intracerebral hemorrhage [48]. Curcumin and NF-κB p65 siRNA suppressed astrocytes activation by inhibiting the NFκB signaling pathway and alleviated spinal cord injury in rats [49]. AKT promoted the phosphorylation of IκBα through activation of the IκB kinase complex (IKK), leading to the dissociation of
NFκB from the IκBα/NFκB complex. Once released and phosphorylated, NFκB entered the nucleus and activated the inflammatory process [90]. In this study, BBP effectively inhibited the nuclear translocation of NFκB and attenuated the phosphorylation of AKT, IκBα and NFκB proteins in LPS-stimulated C6 cells. Similarly, it decreased the phosphorylation of AKT, IκBα and NFκB proteins in the SN of MPTP-induced mice. These findings suggest that BBP suppresses astrocytic inflammation via the AKT/IκBα/NFκB signaling pathway.

TGR5 is a major membrane receptor of bile acids, which can play anti-inflammatory, anti-apoptotic and neuroprotective effect after activation by certain bile acids [91]. TGR5 activation can reduce BBB breakdown after ischemic stroke [92], and attenuate microglial activation and acute injury in hepatic encephalopathy [93]. TGR5 agonist alleviated atherosclerosis by inhibiting the nuclear migration of NFκB and the phosphorylation of IκBα in macrophages [94]. Recent studies by our group have also shown that hydoxyethylcholic acid inhibits LPS-induced inflammation of the CNS by regulating the TGR5/AKT/NFκB signaling pathway [95]. In this study, BBP elevated the levels of TGR5 protein and inhibited the AKT/NFκB signaling pathway in MPTP-induced mice. In vitro, the expression of TGR5 protein did not significantly change, but BBP significantly activated TGR5 and suppressed the AKT/NFκB signaling pathway. After administration of TGR5 inhibitor, the anti-neuroinflammatory effect of BBP on astrocytes was antagonized. These findings verify that BBP may play an anti-neuroinflammatory role by suppressing the AKT/NFκB signaling pathway via TGR5 (Fig. 7).

One of the limitations of the present study is lack of studies concerning TGR5 antagonist, such as triamterene, in PD mice. Indeed, triamterene is mainly used to treat various types of edema, such as ascites caused by heart failure, cirrhosis and chronic nephritis, and water and sodium retention during glucocorticoid treatment. Due to the potentially unspecified reactions in vivo, triamterene treatment in PD mice is equivalent to giving a new drug, which may not fully explain the role of TGR5 in the therapeutic effect of BBP on PD...
Fig. 7 BBP alleviates the progression of PD mice by suppressing astrocyte activation via the TGR5/AKT/NF-κB signaling pathway

mice. Instead, it is necessary to use TGR5 knockout method, especially astrocytic TGR5 knockout mice, in order to fully elucidate the role of TGR5 in the beneficial effect of BBP in vivo in the future.

In sum, BBP alleviates the progression of PD mice, which may be closely related to the suppression of astrocytic neuroinflammation by regulating the TGR5-mediated AKT/NF-κB signaling pathway.

Abbreviations

GFAP: Glial fibrillary acidic protein; IBA1: Adapter molecules 1; COX2: Cyclooxygenase 2; iNOS: Inducible nitric oxide synthase; NF-κB: Nuclear factor κB; AKT: Protein kinase B; LPS: Lipopolysaccharide

References

