

Available online at www.sciencedirect.com

Chinese Journal of Natural Medicines 2021, **19**(7): 505-520 doi: 10.1016/S1875-5364(21)60050-X Chinese Journal of Natural Medicines

•Review•

A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on *Aconitum* alkaloids

MI Li^Δ, LI Yu-Chen^Δ, SUN Meng-Ru, ZHANG Pei-Lin, LI Yi^{*}, YANG Hua^{*}

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China

Available online 20 Jul., 2021

[ABSTRACT] The tubers and roots of *Aconitum* (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natural products mainly extracted from *Aconitum* plants, *Aconitum* alkaloids have complex chemical structures and exert remarkable biological activity, which are mainly responsible for significant effects of *Aconitum* plants. The present review is to summarize the progress of the pharmacological, toxicological, and pharmacokinetic studies of *Aconitum* alkaloids, so as to provide evidence for better clinical application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of *Aconitum* alkaloids, as well as generic synonyms. *Aconitum* alkaloids are both bioactive compounds and toxic ingredients in *Aconitum* plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and immune system and anti-cancer effects. Notably, *Aconitum* alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity, which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux transporters (ETs) are closely related to the low bioavailability of *Aconitum* alkaloids and play an important role in their metabolism and detoxification *in vivo*.

[KEY WORDS] Aconitum alkaloids; Pharmacological activities; Toxicity; Pharmacokinetics[CLC Number] R284, R917[Document code] A[Article ID] 2095-6975(2021)07-0505-16

Introduction

Aconitum alkaloids are bioactive components with complex chemical structures that mostly exist in plants of the two genera *Aconitum* and *Delphinium*^[1, 2], including the characteristic active and toxic components of diterpene alkaloids. According to their chemical skeletons, diterpene alkaloids can be divided into C_{18} -, C_{19} -, and C_{20} -diterpene alkaloids, and their chemical structures are presented in Fig. 1. C_{19} -Diterpene alkaloids, the main types of *Aconitum* alkaloids, include aconitines^[3], lycoctonines^[4], pyro-types^[5], rearranged-types^[6], 7, 17-seco-types^[7], and lactone types^[8]. Based on the esterification of hydroxyl groups at C_8 and C_{14}

[Received on] 23-Jan.-2021

These authors have no conflict of interest to declare.

sites in their structures, aconitines can be further classified into diester-diterpenoid alkaloids (DDAs), monoester-diterpenoid alkaloids (MDAs), and hydramine diterpenoid alkaloids (HDAs)^[9-11]. With the sequential hydrolysis of ester bonds at C_8 and C_{14} , their toxicity was substantially reduced ^[12, 13]. In contrast, C_{18} -diterpene alkaloids are the least distributed *Aconitum* alkaloids, and classified into lappaconitines and ranaconitines ^[14-16]. Compared with lappaconitines, the hydrogen at C_7 site of ranaconitines was substituted by oxygencontaining groups. Furthermore, the chemical skeletons of C_{20} -type diterpene alkaloids are complex and diverse, with the common structural types of hetisines ^[17, 18], hetidines ^[19], atisines ^[20], denudatines ^[21], veatchines ^[22] and napellines ^[23]. For exmaple, songorine is a typical active napelline-type C_{20} diterpene alkaloid extracted from *Aconitum carmichaeli* ^[24].

A large number of studies have confirmed that *Aconitum* alkaloids are the characteristic bioactive components of *Aconitum* species, which exhibit substantial analgesic, antiinflammatory, antioxidant and anti-tumor activities ^[25, 26]. However, due to a narrow therapeutic window, they may cause toxicity to the heart, liver, muscle tissues and nervous system ^[27, 28]. Thus, the use of *Aconitum* in herbal prepara-

[[]Research funding] This work was supported by the National Natural Science Foundation of China (No. 81673592).

^{[*}Corresponding author] E-mail: liyi20087598@163.com (LI Yi); Tel/Fax: 86-25-8327-1220, E-mail: yanghuacpu@126.com (YANG Hua)

^ΔThese authors contributed equally to this work.

Fig. 1 Classification, general structures and numbering systems for C₁₈-, C₁₉- and C₂₀-diterpenen alkaloids and chemical structures of classical diterpene alkaloids

tions is limited in Europe and the United States ^[29]. In recent years, to elucidate the absorption and metabolism characteristics of active or toxic alkaloids in the body, pharmacokinetic studies have been widely performed, which indicate that *Aconitum* alkaloids can be quickly absorbed and widely distributed in the body ^[30]. But the bioavailability of *Aconitum* alkaloids is extremely low, while highly toxic alkaloids can be converted into less toxic metabolites and soluble derivatives ^[31, 32], playing an important role in their metabolism and detoxification *in vivo*.

Recently, many efforts have been devoted to reviewing the phytochemical characteristics of Aconitum and its active components as well as related pharmacological activity and analytical methods. For instance, Zhou et al. ^[26] presented an investigation concerning the safety application of Aconitum by summarizing the phytochemical and pharmacological activity and toxicity of Aconitum. Furthermore, Elshazly M et al. ^[33] focused on liquid chromatography/mass spectrometry analysis of Aconitum and its Chinese herbal medicine. Wu et al. ^[32] illuminated the application of Fuzi as personalized medicine from the respect of pharmacokinetics. So far, there has been no comprehensive and systematic review of Aconitum alkaloids. Therefore, in the current review, we summarize the up-dated, comprehensive, and systematic information about the pharmacological activity and toxicity of Aconitum alkaloids in the cardiovascular system, nervous system, liver, and other organs, as well as the absorption and metabolic characteristics of Aconitum alkaloids, and discuss the toxicityefficacy relationship and pharmacokinetics of Aconitum alkaloids, so as to provide evidence for further development and clinical application of *Aconitum* drugs.

Pharmacological Activities of Aconitum Alkaloids

Effects on the cardiovascular system

Aconitum plants have long been used for the treatment of heart failure and poor circulation ^[29, 34], and Aconitum alkaloids are the main active ingredients for cardioprotective effects (Table 1). For instance, Fuzi total alkaloid (FTA) significantly decreased myocardial damage and infract size in rats with myocardial infraction, which stabilized the cardiomyocyte membrane structure through improving myocardial energy metabolic abnormalities, phospholipids levels and distribution patterns ^[35]. Moreover, fuziline and neoline showed pronounced activity against pentobarbital sodium induced damage in cardiomyocytes, which was characterized in restored beating rhythm and improved cell vitality ^[36]. C₁₉-Diterpenoid alkaloids such as mesaconine, hypaconine and beiwutinine showed remarkable cardiac effects on the isolated bullfrog hearts. Notably, the protective effects of mesaconine were achieved by improving the inotropic effect and left ventricular diastolic function in rats with myocardial ischemia-reperfusion injury^[37]. Higenamine, a benzyltetrahydroisoquinoline alkaloid, showed inhibitory effects on both human and rat platelet aggregation, which was achieved by increasing the recovery rate in a mouse model of acute thrombosis, and lowering the weight of thrombus in an arterio-venous shunt (AV-shunt) rat model^[38]. Meanwhile, higenamine was proved to increase the fibrinogen level, decrease fibrinogen/fibrin degradation product (FDP) level and prothrombin

Component/Dose/Duration	Cell type/Animal model	Effects	Mechanisms	Ref.
Radix Aconiti Lateralis Preparata extract (RAE) and <i>Fuzi</i> total alkaloid (FTA) 1.6, 0.8, and 0.4 g·kg ⁻¹ for 14 d	Rats with myocardial infarction	Anti-myocardial infarction effect	Improve myocardial energy metabolic abnormalities, change phospholipids levels and distribution patterns, and stabilize the structure of cardiomyocyte membrane	[35]
Fuziline and neoline 10, 1, and $0.1 \ \mu mol \cdot L^{-1}$ for 24 h	Neonatal rat cardiomyocytes	Against pentobarbital sodium induced damage in cardiomyocytes	Recover beating rhythm and increase cell viability	[36]
Mesaconine and hypaconine 5 $\text{mg} \cdot \text{mL}^{-1}$ for 30 s (isolated bullfrog hearts), 1 nmol·L ⁻¹ for 10 min (isolated rat hearts), and beiwutinine 5 mg·mL ⁻¹ for 30 s (isolated bullfrog hearts)	Isolated bullfrog hearts,and isolated rat hearts after ischemia- reperfusion	Optimal cardiac action on isolated bullfrog hearts and inhibiting myocardial ischemia-reperfusion injury in isolated rat hearts (measconine)	Increase the average rate of amplitude, and improve the inotropic effect and left ventricular diastolic function	[37]
Higenamine 50 and 100 mg \cdot kg ⁻¹ for 3 d (mice)	ADP, collagen and epinephrine-induced human and rat platelet aggregation, and collagen and epinephrine induced acute thrombosis in mice	Antiplatelet aggregation and anti-thrombotic effects	Inhibit epinephrine-induced platelet aggregation, increase the recovery rates from acute thrombotic challenge in mice, and lower the weight of thrombus within the arteriovenous shunt (AV- shunt) tube of rats	[38]
Higenamine 10, and 50 mg kg^{-1} for 10 d	A disseminated intravascular coagulation (DIC) model in rats	Therapeutic potential for DIC and/or accompanying multiple organ failure	Ameliorate the decrease of fibrinogen level in plasma, increase fibrinogen/fibrin degradation product (FDP) level and prolong prothrombin time (PT)	[39]
Mesaconitine 30 mmol \cdot L ⁻¹ for 0–40 min	Rat aorta	Relaxation in the aorta	Stimulate Ca^{2+} influx <i>via</i> the Na ⁺ /Ca ²⁺ exchangers in endothelial cells	[40]
Hypaconitine 24, 48, and 90 μ mol·L ⁻¹ for 21 h	Oxidized low-density lipoprotein (oxLDL) induced endothelial cells	Suppress the apoptosis of endothelial cells	The histone deacetylase-HMGB1 pathway	[41]
C ₁₉ -Diterpenoid alkaloids 2.5 or 5 mg·mL ^{-1} for 30 s or 10 mmol·mL ^{-1} for 30 s	Isolated bullfrog hearts	Structure-cardiac activity relationship	Increase the average rate of amplitude	[42, 43]

Table 1 Effects of Aconitum alkaloids on the cardiovascular system

time (PT) in a model of disseminated intravascular coagulation (DIC) in rats^[39]. Mesaconitine, as another active *Aconitum* alkaloid, induced vasorelaxation in the aorta of rats through promoting Ca²⁺ influx and activating nitric-oxide synthase ^[40]. Furthermore, hyaconitine targeted the histone deacetylase-high mobility group box-1 pathway to inhibit the oxidized low-density lipoprotein (ox-LDL)-induced apoptosis of endothelial cells ^[41]. According to the structure-activity relationship data, the structures of *Aconitum* alkaloids necessary for cardiac activity included an α -methoxyl or hydroxyl group at C-1, a hydroxyl group at C-8 and C-14, α -hydroxyl group at C-15, and a secondary amine or *N*-methyl group in ring A. Additionally, an α -hydroxyl group at C-3 also contributed to cardiac activity ^[42, 43].

Fuzi is the processed lateral roots of *Aconitum carmichaeli* Debx. (Ranunculaceae), and has been used in traditional Chinese medicine for the treatment of chronic heart failure, hypotension, coronary heart disease and acute myocardial infarction owing to its remarkable effects of restoring yang and saving adversity^[29]. A large number of studies have shown that the cardiotonic effects of *Aconitum* alkaloids, the characteristic active components of *Fuzi*, are multi-targeted, which are achieved by restoring myocardial cells vitality, improving the inotropic effect and left ventricular diastolic function, and inhibiting platelet aggregation. Therefore, the clinical application of Fuzi and *Aconitum* drugs in the treatment of cardiovascular diseases is closely related to the cardiotonic bioactivity of *Aconitum* alkaloids.

Effects on the nervous system

The nervous system can monitor and respond to the changes in the internal and external environment, participate in critical physiological processes such as learning, memory, cognition and initiate all autonomous movements ^[44, 45]. A large number of studies have confirmed that *Aconitum* alkaloids exert remarkable protective effects on the nervous system (Table 2). Neuropathic pain is a highly debilitating chronic pain directly caused by various lesions or diseases affecting the somatosensory nervous system ^[46], which is characterized by spontaneous ongoing pain and hyperalgesia ^[47]. *Aconitum* plants have been widely used for analgesia since ancient time. C₁₈-Diterpenoid alkaloids (weisaconitines D) isolated from *Aconitum weixiense* and two sulfonated C₂₀-

Component/Dose/Duration	Cell type/Animal model	Effects	Mechanisms	Ref.
Weisaconitines D 50, 100 and $200 \text{ mg} \cdot \text{kg}^{-1}$	A mouse model of CH ₃ COOH-induced writhing	Analgesic activity	Inhibit acetic acid-induced writhing in mice	[48]
Aconicatisulfonines A and B 0.1, 0.3 and 1.0 $\text{mg}\cdot\text{kg}^{-1}$	Acetic acid-induced mice	Analgesic activity	Inhibit acetic acid-induced writhing in mice	[49]
Songorine, napelline, mesaconitine, hypaconitine and 12-epinapelline <i>N</i> - oxide 0.025 mg·kg ⁻¹ for 5 d	A mouse model of acetylcholine cramp and inflammatory hyperalgesia induced by naloxone Freund' s adjuvant	Analgesic activity	Prolong the time before manifestation of nociceptive reaction and reduce the number of cramps	[50]
Guiwuline 15 mg·kg ⁻¹	Hot-plate method induced mice	Analgesic activity	Improve the results of the hot- plate test in mice $(55 ^{\circ}\text{C})$	[51]
Neoline 6 mg·kg ^{-1} ·d ^{-1} for 5 and 7 d	Dorsal root ganglion neurons isolated from normal mice	Alleviate neuropathic pain	Alleviate the oxaliplatin-induced reduction of neurite elongation and inhibit the induction of mechanical and cold hyperalgesia	[52]
Neoline 10 mg \cdot kg ⁻¹ · d ⁻¹ for 7, 9 and 21 d	A mouse model of mechanical allodynia	Relieve neuropathic pain	Ameliorate the mechanical threshold of von Frey test and eural plasticity	[53]
Isotalatizidine 0.1, 0.3 and 1 mg·kg ⁻¹ for 30 min, 1, 2 and 4 h; isotalatizidine 25 μ mol·L ⁻¹ for 1 h	A mouse model of CCI- induced neuropathic pain, and BV-2 and primary microglial cells	Attenuate the hypersensitivity of somatic pain	Stimulate the expression of microglial dynorphin A mediated by the ERK/CREB signaling pathway	[54]
Lappaconitine 0.3, 0.7, 2 and 7 mg kg^{-1} for 1 h interval	A rat model of neuropathic pain and bone cancer pain, primary microglial cells and neurons	Antihypersensitivity in chronic pain	Stimulate the expression of spinal microglial dynorphin A	[55]
Bulleyaconitine A 10, 30, 100, 300 and 1000 ng for 1 h (rat) or 100 nmol·L ^{-1} for 2 h (cell)	A rat model of neuropathic pain and bone cancer pain, primary neuron and glial cells	Block painful neuropathy caused by the spinal nerve	Activate spinal k-opioid receptors and stimulate the expression of dynorphin A in spinal microglia	[56]
Bulleyaconitine A 10 μ mol \cdot L ⁻¹ for 3 ms	HEK293t cells	Adjuvant for prolonged cutaneous analgesia	Inhibit Nav1.7 and Nav1.8 Na ⁺ currents	[57]
Bulleyaconitine A 5 nmol \cdot L ⁻¹ for 15 min	Dorsal root ganglion neurons	Antineuropathic pain effect	Block tetrodotoxin-sensitive voltage-gated sodium (Nav1.7 and Nav1.3) in dorsal root ganglion neurons	[58]
Bulleyaconitine A 10 μ mol·L ⁻¹ for 4 ms	Clonal GH3 cells	Treat chronic pain and rheumatoid arthritis	Reduce neuronal Na ⁺ currents	[59]
Pyroaconitine, ajacine, septentriodine, and delectinine 10 μ mol·L ⁻¹ for 8 ms	CHO cells	Potential anti- epileptic activity	Inhibit Nav1.2 channel	[60]
Aconorine and lappaconitine 50, 75 and 100 μ mol·L ⁻¹ for 15 min; heteratisine and hetisinone 50, 75, 100, and 125 μ g·mL ⁻¹ for 30 min; heterophyllinine A and heterophyllinine B 0.2 mmol·L ⁻¹ for 15 min	ACh and BCh	Cholinesterase inhibitory effect	-	[64, 65, 67]
Hemsleyaline IC_{50} 471 ± 9 µmol·L ⁻¹ for 30 min; kirisine G, kirisine H, gigaconitine and aconicarmichinium C 10 µL for 30 min	ACh	Acetylcholinesterase inhibitory effects	-	[15, 66]

 Table 2
 Effects of Aconitum alkaloids on the nervous system

				Continued
Component/Dose/Duration	Cell type/Animal model	Effects	Mechanisms	Ref.
Higenamine 10 μ mol·L ⁻¹ and enryneine 100 μ mol·L ⁻¹	Mouse phrenic nerve- diaphragm preparation	Higenamine augments the release of both nerve- evoked and spontaneous ACh, and muscle tension. Coryneine reducea the nerve-evoked release of ACh	Higenamine increases ACh release through activation of β -adrenoeptor and cnryneine and depresses ACh release by preferentially acting at the motor nerve terminal	[68]
Aconitine $3 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$ per 10 s	Mechanically dissociated ventromedial hypothalamic (VMH) neurons in rats	Modulate the membrane excitability of VMH neurons in rats	Activate voltage-dependent Na ⁺ channels, depolarize the presynaptic membrane, activate voltage-dependent Ca ²⁺ channels and increase intraterminal Ca ²⁺ concentration	[69]
Songorine 5, 25, and 100 $\mu g \cdot k g^{-1}$ for 5 d	Scopolamine-traumatized mice	Correct scopolamine- induced abnormalities of mnestic function	Improve conditioned passive avoidance response (CPAR) and normalize behavior activities	[70]
Napelline and songorine, 0.025 mg·kg ⁻¹ for 5 d	Albino outinbred mature female mice and a mouse model of serotonin- induced edema	Antidepressant and antiexudative effects	Reduce the time of immobilization in the tail suspension test and modulate the sensitivity to serotonin	[75]
Diterpenoid alkaloids from the roots of <i>Aconitum</i> <i>pendulum</i> Busch 25 μ mol·L ⁻¹	-	Neroprotective activity	With remarkable disaggregation potency on the $A\beta_{1-42}$ aggregates	[76]
Bullatine A 1, 10, 20 and 50 μ mol·L ⁻¹ for 24 h	ATP-induced BV-2 cells	Anti-rheumatic, anti- inflammatory and anti- nociceptive effects	Attenuate ATP-induced BV-2 microglia death/apoptosis <i>via</i> the P2X receptor pathway	[77]
Diterpenoid alkaloids from the Lateral Root of <i>Aconitum carmichaelii</i> 10 μ mol·L ⁻¹	Serum deprivation- induced PC12 cells	Treat neurodegenerative disorders	Increase cell viability	[78]
Songorine $0.1-300$ mmol·L ⁻¹	Triton-treated synaptic membranes of CA1 hippocampal neurons in rats	Enhance the excitatory synaptic transmission in rat hippocampus	Activate the D_2 receptor (for excitation) and block the postsynaptic $GABA_A$ receptor (for disinhibition)	[79]
Songorine 0.25 and 2.5 $\text{mg} \cdot \text{kg}^{-1}$ for 5 d	Vogel's conflict test	Anxiolytic activity	Increase the number of punished drinks and produce higher values of behavioral activity parameters	[80]
Talatisamine 300 μ mol·L ⁻¹	Dissociated CA1 pyramidal neurons	Alzheimer's disease	Delay rectifier K ⁺ channel in rat hippocampal neurons	[81]

diterpenoid alkaloid iminiums isolated from a water extract of the *Aconitum carmichaelii* lateral roots produced obvious analgesic activities against acetic acid-induced mice writhing ^[48, 49]. Diterpene alkaloids extracted from *Aconitum baikalensis* presented substantial analgesic effects on the naloxone-induced acetylcholine cramp model and rats with inflammatory hyperalgesia induced by Freund's adjuvant ^[50]. Furthremore, a novel franchetine type of norditerpenoid, which was isolated from the roots of *Aconitum carmichaeli* Debx, showed potential analgesic activity and less toxicity ^[51]. Neoline, the active ingredient in processed aconite root, alleviated oxaliplatin-induced murine peripheral neuropathy ^[52] and mechanical hyperalgesia induced by partial ligation of the sciatic nerve ^[53]. Isotalatizidine exerted analgesic effects by activating the ERK1/2-CREB pathway and mediating the expression of dynorphin A in microglia cells ^[54]. Another research proved that lappaconitine and bulleyaconitine A exerted anti-hypersensitivity in spinal nerve ligation-induced neuropathic rats through stimulating spinal microglia to express dynorphin A ^[55, 56]. In addition, bulleyaconitine A also played a role in anti-neuropathic pain *via* blocking Nav1.7 and Nav1.3 channels to reduce the hyper-excitability of dorsal root ganglion neurons caused by nerve injury ^[57, 58]. Bulleyaconitine A also displayed long-acting local anesthetic properties both *in vitro* and *in vivo*, and often used in the treatment of chronic pain ^[59]. Diterpene alkaloids isolated from the roots of *Aconitum moldavicum* showed significant inhibitory effects on the Nav 1.2 channel ^[60], suggesting potential anti-epileptic activity.

The cholinergic system is a major constituent of the central nervous system, which is closely related to learning, memory and sensory information ^[61, 62]. Acetylcholine (ACh) is the neurotransmitter used by cholinergic neurons at the neuromuscular junctions and in the spinal cord, memory-related circuits in the brain and parasympathetic nerve terminals, which plays a crucial role in the peripheral and central nervous systems ^[62, 63]. Acetylcholinesterase can degrade acetylcholine, block the excitatory effect of neurotransmitters on the post-synaptic membrane, and ensure the normal transmission of nerve signals ^[62]. According to recent reports, diterpenoid alkaloids in Aconitum such as aconorine, lappaconitine, and heteratisine exerted significant anti-cholinesterase activity [64, 65]. In addition, the new diterpenoid alkaloids isolated from Aconitum also showed probable inhibitory effects against cholinesterase [66, 67]. Moreover, the four diterpenoid alkaloids extracted from the roots of Aconitum kirinense Nakai exhibited moderate anti-acetylcholinesterase activity and neuroprotective activity [15]. Interestingly, higenamine promoted the release of ACh via activating β -adrenoeptor, while cnryneine preferentially acted at motor nerve terminals to inhibit ACh release, exerting antagonistic effects on the release of ACh ^[68]. In addition, aconitine depolarized the presynaptic membrane via activating voltage-dependent Na⁺ channels, and enhanced the spontaneous transmitter release of the presynaptic nerve terminals by activating voltage-dependent Ca²⁺ channels, which played an important role in modulating the membrane excitability of ventromedial hypothalamic (VMH) neurons in rats ^[69]. Repeated administration of songorine improved conditioned passive avoidance response (CPAR) conditioning and normalized behavioral activities throughout the entire observation period, thereby correcting scopolamine-induced abnormality of mnestic function^[70].

Neuroinflammation, chronic oxidative stress and neuronal damage contribute to the onset of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, amyotrophy lateral sclerosis as well as neuropsychiatric illnesses such as depression and autism spectrum disorder ^[71-74]. Current research confirmed that the diterpenoid alkaloids of Aconitum exhibited antidepressant properties through regulating the sensitivity to serotonin ^[75], and they also showed significant disaggregation potency on the A β_{1-42} aggregates, indicating probable inhibitory effects against Alzheimer's disease ^[76]. Bullatine A, a diterpenoid alkaloid of the genus Aconitum, attenuated ATP-induced BV2 microglia death/apoptosis via the P2X receptor pathway, thereby exerting neuroprotective effects ^[77]. Some other diterpene alkaloids extracted from the lateral root of Aconitum carmichaelii also exerted neuroprotective effects [78]. For instance, songorine was proved to be a non-competitive antagonist at the GABA_A receptor in the brain of rat, which resulted in potential therapeutic effects on amyotrophy lateral sclerosis^[79]. Moreover, songorine also exhibited significant anxiolytic activity^[80]. In addition, talatisamine was a potent blocker of delayed rectifier K^+ channels in rat hippocampal neurons, which was beneficial for Alzheimer's treatment ^[81].

Aconitum has also been widely used as analgesic and antispasmodic drugs since ancient times, and *Aconitum* alkaloids exert prominent central analgesic effects without addiction, which are considered as the potential active ingredients of new analgesics. At present, Wutou decoction and Shenfu injection show significant therapeutic effects on angina pectoris and pain of joints ^[29, 82]. In addition, *Aconitum* alkaloids, as a type of naturally active ingredients with significant anticholinesterase activity and neuroprotective effect, have shown potential therapeutic effects on a variety of nervous system diseases, and their clinical therapeutic effects remains to be further studied.

Effect on the immune system

The immune system, consisting of immune organs, immune cells and immune factors, is a major defense mechanism to protect host homeostasis against the invasion of pathogens, toxins, and allergens. However, if the immune system cannot distinguish between itself and non-self, it will cause excessive damage to own tissues ^[83, 84], resulting in autoimmune diseases such as systemic lupus erythematosus ^[85], rheumatoid arthritis ^[86], and cold agglutinin disease ^[87]. The protective effect of *Aconitum* alkaloids on the immune system has been extensively studied (Table 3).

A large volume of studies indicated that Aconitum diterpene alkaloids partly inhibited the proliferation and NO production in LPS-induced RAW264.7 cells [88-92]. Aconitine inhibited RANKL-induced osteoclast differentiation and the expression of osteoclast-specific genes via suppressing NF-kB and NFATc1 activation in RAW264.7 cells ^[93]. What's more, total alkaloids of Aconitum tanguticum improved the pathological changes in the lungs, and reduced inflammatory cell infiltration and pro-inflammatory cytokine release via inhibiting the NF- κ B activation in LPS-induced acute lung injury in rats ^[94]. 14-O-acetylneoline, isolated from Aconitum laciniatum, showed anti-inflammatory effect on colitis mice characterized by decreasing weight loss, inhibiting macroscopic pathology and histological inflammation and reducing the colonic IFN-y mRNA levels ^[95]. Moreover, Aconitum alkaloid suppressed the proliferation and migration of SW982 cells through inhibiting Wnt-5a mediated JNK and NF-kB signaling pathways [96] and also inhibited ConA- and LPS-induced splenocyte proliferation ^[97]. Benzoylaconitine suppressed IL-1 β -induced expression of IL-6 and IL-8 via inhibiting the activation of the MAPK (ERK, JNK, and p38), Akt, and NF-kB pathways in SW982 cells ^[98]. In type II collageninduced arthritis (CIA) mice, higenamine reduced the elevation of clinical arthritis scores and inhibited inflammatory reactions, oxidation damage and caspase-3/9 activation, which was possibly related to the heme oxygenase (HO)1 and PI3K/Akt/Nrf2 signaling pathways ^[99]. In addition, higenamine also increased myelin sparring and enhanced spinal cord repair process *via* promoting M2 activation macrophage, and reduced Hmgb1 expression dependent on HO-1 induction in

Component/Dose/Duration	Cell type/Animal model	Effects	Mechanisms	Ref.
Nagarine A 72.63 \pm 0.39 µmol·L ⁻¹ for 24 h; nagarine B 52.98 \pm 0.50 µmol·L ⁻¹ for 24 h	LPS-induced RAW264.7 cells	Anti-inflammation	Inhibit the production of IL-6	[88]
Bulleyanine A 10, 20 and 40 μ mol L ⁻¹ for 24 h	LPS-induced RAW264.7 cells	Anti-inflammation	Inhibit the production of NO	[89]
Mesaconitine, hypaconitine, napelline, songorine and 12- epinapelline <i>N</i> -oxide, $0.025 \text{ mg} \cdot \text{kg}^{-1}$ for 5 d	Carrageenan-induced acute inflammation in mice, histamine-induced inflammation in mice, and acetic acid-induced peritonitis in mice	Anti-inflammation	Inhibit inflammation at various stage and show highly anti-exudative activity	[90]
Szechenyianine B, szechenyianine C, <i>N</i> -deethyl-3-acetylaconitine, and <i>N</i> -deethyldeoxyaconitine 0.05, 0.1, 0.5, 1, 5 and $10 \mu \text{mol} \cdot \text{L}^{-1}$ for 18 h	LPS-induced RAW264.7 cells	Anti-inflammation	Inhibit the production of NO	[91]
Lappaconitine and puberanine, $100 \ \mu g \cdot m L^{-1}$ for 30 min	Zymosan activated serum-induced neutrophils	Anti-inflammation	Inhibit the production of superoxide	[92]
Aconitine 0.125 and 0.25 mmol· L^{-1} for 1, 2, 8, 24 h, 4 d or 7 d	RANKL-induced RAW264.7 cells	Inhibit RANKL-induced osteoclast differentiation	Inhibit the RANKL-induced activation of NF- <i>k</i> B and NFATc1 and suppress the expression of osteoclast specific genes and DC-STAMP	[93]
Total alkaloids of <i>Aconitum</i> tanguticum 30 and 60 mg \cdot kg ⁻¹ for 6, 12 and 24 h	LPS-induced acute lung injury in rats	Exhibit potent protective effects on LPS-induced acute lung injury in rats through anti- inflammation	Increase the value of PaO ₂ or PaO ₂ /FiO ₂ , decrease myeloperoxidase activity and TNF- α , IL-6 and IL-1 β leveles in BALF and inhibit NF- κ B activation in lung tissue	[94]
14-O-acetylneoline 10, 20 and 50 μg for 3 d	TNBS-induced colitis in mice	Mitigate inflammation against ulcerative colitis	Significantly lower the clinical score, macroscopic pathology and grades of histological inflammation and reduce colonic IFN-y mRNA level	[95]
Alkaloids extract removed lappaconitine from <i>Aconiti</i> <i>Sinomontani</i> Radix (MQB) 1, 10 and 20 µg·mL ⁻¹ for 12, 24 and 36 h	SW982 cells	Inhibit the proliferation and migration of human synovial fibroblast cells	Inhibit the mRNA expression of Wnt5a, Runx2, Bmp2 and MMP3 and inhibit the phosphorylation of JNK and NF- <i>k</i> B p65 and the expression of MMP3	[96]
Szechenyianine E, 8- <i>O</i> -methyl-14- benzoylaconine,and spicatine A $0.16, 0.8, 4, 20$ and $100 \ \mu mol \cdot L^{-1}$ for 48 h	ConA-induced or LPS- induced splenocytes	Suppress immune for the treatment of autoimmune diseases	Inhibit splenocyte proliferation	[97]
Benzoylaconitine 5 and 10 μ mol·L ⁻¹ for 1, 6, 12 and 48 h	IL-1β-stimulated SW982 cells	A potential therapeutic agent for rheumatoid arthritis treatment	Inhibit the expression of IL-6 and IL-8 gene and protein, decrease the activation of MAPK and the phosphorylation of Akt and inhibit the degradation of $I\kappa B-\alpha$ and the phosphorylation and nuclear transposition of p65 protein	[98]
Higenamine 10 mg∙kg ^{−1} for 14 d	Type II collagen induced arthritis mice	Ameliorate collagen- induced arthritis	Resuppress inflammatory reactions, oxidation damage and caspase-3/9 activation, increase HO-1 protein expression and upregulate of the PI3K/Akt/Nrf-2 signaling pathway	[99]

Table 3 Effects of Aconitum alkaloids on the immune system

				Continued
Component/Dose/Duration	Cell type/Animal model	Effects	Mechanisms	Ref.
Higenamine 5, 10 and 15 mg kg^{-1} for 1, 3, 7, 14, 28 and 42 d	A murine model of spinal cord injury	Promote locomotor function after spinal cord injury	Increase the expression of IL-4 and IL 10, promote M2 macrophage activation and reduce Hmgb1 expression dependent on HO-1 induction	[100]
Aconitine 25 and 75 μg·kg ⁻¹ for 9 weeks	Pristine-induced systemic lupus erythematosus in mice	Improve the pathological damage of systemic lupus erythematosus	Decrease the blood leukocyte counts and the level of anti-dsDNA antibody in serum, ameliorate renal histopathologic damage, reduce IgG deposit in the glomerular and decrease the levels of PGE2, IL-17a and IL-6	[101]

spinal cord injury mice ^[100]. Aconitine ameliorated the renal pathology through inhibiting pro-inflammatory cytokines and inflammation in the kidneys, and decreasing blood leucocyte counts and the level of anti-dsDNA antibody in serum in a pristane-induced murine model, which indicated that aconitine is a potential compound for the treatment of systemic lupus erythematosus ^[101].

Anti-cancer effects

Diterpenoid alkaloids isolated from Aconitum plants have great potential to treat cancer in many in vitro experiments (Table 4). Accumulating studies showed that Aconitum diterpenoid alkaloids were effective against proliferation in human cancer cell lines [102-108], which might be caused by activation of p38 MAPK-, death receptor-, mitochondrial-, caspase-meditated apoptosis ^[109]. C₁₉ Diterpenoid alkaloids significantly inhibited the growth of HepG2 cells possibly through blocking the cell cycle at the G₁/S phase, up-regulating the expression of B-cell lymphoma 2 (Bcl-2)-associated X (Bax) and caspase-3 protein and down-regulating the expression of Bcl-2 and CCND1 [108, 110]. Furthermore, aconitine inhibited the proliferation of hepatocellular carcinoma cells in the context of ROS-induced mitochondrial-dependent apoptosis ^[111]. Meanwhile, aconitine also up-regulated the expression of cleaved-caspase-3, cleaved-caspase-9, and cleaved poly (ADP-ribose) polymerase 1 (PARP1), which induced the apoptosis in Miapaca-2 and Panc-1 cells, producing anti-human pancreatic cancer activity ^[112]. Hpyaconitine inhibited transforming growth factor- β 1 (TGF- β 1)-induced epitheliamesenchymal transition, and adhesion, migration and invasion of lung cancer cells by inhibiting the NF- κ B signaling pathway^[113]. Moreover, alkaloids from Aconitum taipeicum showed anti-leukemia activity ^[114, 115]. Therefore, Aconitum alkaloids played potential inhibitory effects on many types of cancer.

Other pharmacological effects

Aconitum alkaloids also showed antimicrobial, antivirus, antiplasmodial, antioxidant and reparative activities. The new C₁₉-diterpene alkaloids extracted from Aconitum duclouxii such as ducloudines C, D, E and F exhibited good biological activities against pathogenic fungi and pathogenic bacteria ^[116, 117]. Norditerpenoid alkaloids from the roots of Acon-

itum heterophyllum Wall were proved to have antibacterial activity ^[118]. Carmichaedine, a new C₂₀-diterpenoid alkaloid from the lateral roots of *Aconitum carmichaeli*, exhibited potent antibacterial activity against *Bacillus subtilis* ^[119]. Meanwhile, demethylenedelcorine and 18-*O*-methylgigactonine isolated from *Aconitum sinomontanum* Nakai were proved with pesticidal activities against *Mythimna separata* ^[120]. Other studies concluded that *Aconitum* alkaloids showed little inhibitory effect on *Escherichia coli* and *Helicobacter pylori*, but exerted potential inhibitory effects on the growth of *Sta-phylococcus aureus* ^[121, 122].

Moreover, tanguticulines A and E extracted from Aconitum tanguticum inhibited H1N1-induced cytopathic changes, exhibiting obvious antivirus activities in vitro^[123]. The major alkaloid from Aconitum orochryseum, atisinium chloride, proved moderate antiplasmodial activity against the TM4 strain and the K1 strain of *Plasmodium falciparum*^[124]. The mixture of diterpene alkaloids of Aconitum baicalense showed significant regenerative hemostimulating effects on a model of cytostatic myelosuppression, which were achieved by activating hematopoietic progenitor cells ^[125]. Besides, songorine stimulated the mitotic activity and differentiation of mesenchymal progenitor cells through activating the JAK/STAT signaling pathway^[126]. Aconite alkaloids directly stimulated the growth of fibroblasts, which might contribute to reparative regeneration of the plane dorsal skin^[127]. Aconitum alkaloids also showed strong binding capacity to metal ions and used as effective antioxidants [128, 129]

Toxicology of Aconitum Alkaloids

In addition to therapeutic activities, *Aconitum* alkaloids have subsantial cardiotoxicity, neurotoxicity and liver toxicity at high doses or for long-term use. A large number of studies indicated that *Aconitum* diterpenoid alkaloids possibly caused disordered ion channels and DNA damage, resulting in mitochondrial-induced cardiomyocyte apoptosis ^[130-132]. Aconitine, one of the most bioactive component of *Aconitum* alkaloids, remarkably aggravated Ca²⁺ overload to induce arrhythmia and trigger apoptosis *via* the p38 MAPK signaling pathway in rat ventricular myocytes ^[134]. Aconitine also

Component/Dose/Duration	Cell type/Animal model	Effects	Mechanisms	Ref.
14-Benzoylaconine-8- palmitate IC ₅₀ 11.9, 27.6,and 31.8 μ mol·L ⁻¹ for 72 h	MCF-7, HepG2 and H460 cell lines	Anti-tumor	Inhibit the proliferation of cancer cells	[102]
Sinchiangensine A,	HL-60. A-549, SMCC-7721,	Anti-tumor	Inhibit the proliferation of cancer	[103]
Aconitum alkaloids	CT26. SW480, HeLa, SkMel25 and SkMel28 cell lines	Anti-tumor	Inhibit the proliferation of cancer cells	[104]
Navicularine B IC ₅₀ 13.50, 18.52, 17.22, 11.18 and 16.36 μ mol·L ⁻¹ , respectively	HL-60, SMMC-7721, A-549, MCF-7 and SW480 cell lines	Anti-tumor	Inhibit the proliferation of cancer cells	[105]
Lipojesaconitine IC ₅₀ 6 to 7.3 μ mol·L ⁻¹ for 72 h	A549, MDA-MB-231, MCF-7, KB and KB-VIN cell lines	Anti-tumor activities except a multidirectional- resistant subline	Inhibit the proliferation of cancer cells through possibly being exported by P-glycoprotein	[106]
Delelatine IC ₅₀ 4.36 μ mol·L ⁻¹ for 72 h	P388 cell line	Anti-tumor	Inhibit the proliferation of cancer cells	[107]
Taipeinine A 7.5, 15 and 30 μ mol·L ⁻¹ for 24, 48 and 72 h	HepG2 cell line	Anti-tumor <i>via</i> apoptosis	Inhibit proliferation and invasiveness, block the cell cycle at the G ₁ /S phase and up-regulate the expression of Bax and caspase- 3 protein anddown-regulate the expression of Bcl-2 and CCND1 protein	[108]
Aconitum szechenyianum Gay alkaloids 100, 200, 400, and 800 μ g·mL ⁻¹ for 24 h	HepG2, HeLa and A549 cell lines	Anti-tumor through the p38-MAPK, death receptor-, mitochondria- and caspase-dependent adoptive pathways	Upregulate TNF-R1 and DR5 through activation of p38 MAPK, upregulate p53, and phosphorylate p53 and Bax, Down-regulate Bcl-2 and activate caspase 3/8/9	[109]
Aconitine, hypaconitine, mesaconitne andoxonitinefor 72 h	HepG2 cell line	Anti-tumor	Inhibit the proliferation of cancer cells	[110]
Aconitine 25 and 50 $\mu g \cdot m L^{-1}$ for 72 h	HepG2, Huh7 and L02 cell lines	Inhibit the proliferation of hepatocellular carcinoma	Release of cytochrome c from the mitochondria, activate apoptosis, increase the cleavage of caspases 3/7 and Bax protein level and decrease Bcl-2 level	[111]
Aconitine 15, 30, and 60 μ mol·L ⁻¹ for 48 h (cell); and 50, and 100 mg·kg ⁻¹ for 28 d (mice)	Miapaca-2, PANC-1 cells, Miapaca-2 cells and, a xenograft mouse model	Induce apoptosis in human pancreatic cancer	Up-regulate the expression of pro- apoptotic factors Bax, cl-caspase- 3, cl-caspase-9, and cleaved PARP1 and decrease anti- apoptotic protein Bcl-2 and NF- κB expression	[112]
Hypaconitine 2, 4 and 8 μmol·L ⁻¹ for 48 h	TGF-β1-induced A549 cells	Inhibit the adhesion, migration and invasion abilities of lung cancer	Inhibit TGF- β 1-induced u- pregulation of <i>N</i> -cadherin, NF- κ B and inhibit TGF- β 1-induced adhesion, migration and invasion abilities	[113]
Amide alkaloids from Aconitum taipeicum; andditerpenoid alkaloids from Aconitum taipeicum	HL60 and K562 cell lines	Anti-leukaemia	Inhibit the proliferation of cancer cells	[114-115]

Table 4 Anti-cancer effects of Aconitum alkaloids

up-regulated a series of pro-apoptotic proteins including P53, BAX, and caspase-3 but down-regulated anti-apoptotic proteins Bcl-2 and TnT, which induced cardiotoxicity in rat myocardial cells ^[133, 134]. Aconitine induced cardiomyocyte damage *via* the mitochondria-mediated apoptosis pathway ^[135] and mitigated BNIP3-dependent mitophagy ^[136]. Moreover, aconitine blocked HERG and Kvl.5 potassium channels to induce arrhythmias ^[137]. Aconitine and mesaconitine induced cardiotoxicity and apoptosis, and influenced the expression of cardiovascular relative genes including Tbx5, Gata4, and Nkx2.5 in embryonic zebrafish ^[138]. As another toxicalkaloid,hypaconitineinducedcardiotoxicitythroughinhibiting the KCNH2 (hERG) potassium channels in conscious dogs ^[139].

Notably, clinical reports also confirmed that improper intake of aconite alkaloids might cause severe cardiotoxicity. *Aconitum* herbs with poor quality such as incompletely processing, poor quality of prescription such as overdose, inadequate boiling or dispensary errors ^[140, 141] and 'hidden' aconite poisoning which refers to the toxicity caused by the contaminants in other dispensed herbs are the main reasons for aconite poisoning ^[142]. Patients with aconite poisoning often showed cardiotoxicity such as bidirectional ventricular tachycardia ^[143] and ventricular dysrhythmias ^[144], as well as prolonged hypotension and sinus bradycardia ^[145]. Acute aconite poisoning also induced myocardial infarction with elevated cardiac enzymes and chest tightness ^[146], and even caused death ^[147].

In additon to cardiotoxicity, *Aconitum* alkaloids also caused hepatoxicity and neurotoxicity, and aconitine promoted liver autophagy via the PI3K/Akt/mTOR signaling pathway in mice ^[148]. Aconitine, mesaconitine and hypacontine possibly penetrated the blood-brain barrier (BBB) *via* a proton-coupled organic cation antiporter and stimulated dynorphin A expression to cause anti-hypersensitivity ^[13], which partly revealed the underlying mechanism of their severe neurotoxicity ^[149].

Pharmacokinetic Studies of Aconitum Alkaloids

Currently, the pharmacokinetic characteristics of *Aconitum* alkaloids are extensively investigated from the perspective of absorption, distribution and metabolism.

Absorption

Efflux transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), play a major role in regulating the absorption of *Aconitum* alkaloids in the intestine ^[150]. Aconitine was rapidly eliminated with a short half-life (i.v., 80.98 ± 6.40 min), and its total oral bioavailability was only $8.23\% \pm 2.5\%$ in rat plasma ^[151]. Further studies confirmed that P-gp was involved in poor intestinal absorption of aconitine, resulting in reduced toxicity ^[30,152-154]. In a pharmacokinetics study using urine and fecal samples of SD rats, 87.71% of mesaconine was excreted without changes after oral administration. The oral bioavailability of mesaconine was only 14.9%, which may be related to its low intestinal permeability due to lack of lipophilicity or the inhibitory effect of P-gp^[154, 155]. Moreover, the bioavailability of hypaconitine was also extremely low due to inhibition of P-gp^[154]. After oral administration, benzoylmesaconine, benzoylaconine and benzoylhyaconine achieved the maximal plasma concentrations at 0.222, 0.306, and 0.222 h, respectively and their bioavailability was also very low due to the inhibitory effect of P-gp^[30,156]. In addition, the pharmacokinetics studies of urine and plasma samples from healthy subjects showed that 94% of higenamine was excreted from the body after administration within 30 min (approximately four halflives)^[157]. However, compared with aconitine and benzovlaconine, aconine did not significantly increase the expression of P-gp in LS174T and caco-2 cells ^[158], and its transport was not significantly differet in the presence of P-gp inhibitor, implying that aconine might be absorbed through passive diffusion ^[30]. Additionally, Aconitum alkaloids significantly increased the protein and mRNA levels of MRP2 and BCRP, which contributed to the safe application of Aconitum alkaloids ^[12, 150, 159]

Distribution

Aconitum alkaloids were widely distributed in the body after oral administration. The amounts of toxic alkaloids were significantly higher in the liver and kidneys, and relatively lower in the heart and blood, with only trace amounts in the brain due to the action of the blood-brain barrier ^[160-162]. The distribution data are useful to elucidate the pharmacokinetics process of *Aconitum* alkaloids in the body.

Metabolism

CYPs are abundant in the liver, kidneys, lungs and gastrointestinal tract, which are responsible for metabolizing exogenous and endogenous compounds through hydroxylation or oxidation ^[163]. As expected, CYPs are of great significance to the metabolism of Aconitum alkaloids, which can transform toxic compounds into more soluble derivatives, suitable for excretion from the body, thereby greatly reducing toxicity ^[164, 165]. Aconitum alkaloids are mainly metabolized by CYP 3A4/5, and slightly metabolized by CYP 2C8, 2C9, and 2D6 [166-168]. Further research found that the main metabolic pathways of DDAs in the body were demethylationdehydrogenation and hydroxylation, which were more likely to occur in human liver microsome (HLM) and intestine microsome (HIM) incubations, while MDAs were mainly metabolized by demethylation-dehydrogenation in HIM incubation ^[164, 165]. Aconitine was transformed into at least 6 metabolites through O-demethylation and N-demethylation in rat liver microsomal incubations^[31]. These results may contribute to the research of Aconitum alkaloid poisoning and metabolic detoxification.

Conclusions and Future Perspectives

Aconitum alkaloids have been widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuro-

Fig. 2 Schematic representation of the pharmacological and toxicological effects and related molecular mechanisms of Aconitum alkaloids

pathic pain [98, 169-171]. This review summarizes the pharmacological and toxicological effects and related molecular mechanisms of Aconitum alkaloids in the past twenty years, with the schema presented in Fig. 2. Aconitum alkaloids exert significant protective effects on the cardiovascular system, nervous system, and immune system as well as anti-cancer activity. However, due to a narrow therapeutic window, Aconitum alkaloids are easily to trigger strong cardiotoxicity, neurotoxicity and liver toxicity, which restrict its practical use. Therefore, the processing methods of Aconitum such as decoction are commonly used to reduce toxicity, which is also used in combination with dried ginger, licorice and ginseng to form traditional Chinese medicine compound prescriptions, such as Sini decoction and Shenfu decoction to achieve decreasing toxic and synergic effects [29, 172]. However, there are still some cases concerning poisoning in clinical practice. Therefore, it is of great significance to standardize Aconitum alkaloids in medicinal materials. Although Aconitum alkaloids are characterisized by poor absorption, rapid excretion and low bioavailability in vivo, they can still show significant pharmacological activity. Therefore, further exploration of the molecular mechanism of action and toxicological mechanism of Aconitum alkaloids in vivo will be helpful to ensure their safety application, which may become a research hotspot for Aconitum plants.

Abbreviations

ACh: Acetylcholine; AV-shunt: arterio-venous shunt; Bax: B-cell lymphoma 2-associated X; BBB: blood-brain barrier; Bcl-2: B-cell lymphoma 2; BCRP: breast cancer resistance protein; CIA: collagen-induced arthritis; CPAR: conditioned passive avoidance response; CYPs: cytochrome P450 proteins; DDAs: diester-diterpenoid alkaloids; DIC: disseminated intravascular coagulation; ETs: efflux transporters; FDP: fibrinogen/fibrin degradation product; FTA: fuzi total alkaloid; HDAs: hydramine diterpenoid alkaloids; HIM: human intestine microsomes; HLM: human liver microsomes; HO: heme oxygenase; MDAs: monoester-diterpenoid alkaloids; MRP2: multidrug resistance-associated protein; ox-LDL: oxidized low-density lipoprotein; PA: processed aconite root; PARP1: poly ADP-ribose polymerase 1; P-gp: P-glycoprotein; PT: prothrombin time; RAE: Radix Aconiti Lateralis Preparata extract; TGF- β 1: transforming growth factor- β 1; VMH: ventromedial hypothalamic.

References

- Yamashita H, Takeda K, Haraguchi M, et al. Four new diterpenoid alkaloids from Aconitum japonicum subsp. subcuneatum [J]. J Nat Med, 2018, 72(1): 230-237.
- [2] Khan H, Nabavi SM, Sureda A, et al. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum [J].

Eur J Med Chem, 2018, 153: 29-33.

- [3] He F, Wang CJ, Xie Y, et al. Simultaneous quantification of nine Aconitum alkaloids in Aconiti Lateralis Radix Praeparata and related products using UHPLC-QQQ-MS/MS [J]. Sci Rep. 2017, 7(1): 13023.
- [4] Begum S, Ali M, Latif A, et al. Pharmacologically active C-19 diterpenoid alkaloids from the aerial parts of Aconitum laeve royle [J]. Rec Nat Prod, 2014, 8(2): 83-92.
- [5] Murayama M, Mori T, Bando H, et al. Studies on the constituents of Aconitum species. IX. The pharmacological properties of pyro-type aconitine alkaloids, components of processed aconite powder 'kako-bushi-matsu': analgesic, antiinflammatory and acute toxic activities [J]. J Ethnopharmacol, 1991, 35(2): 159-164.
- [6] Cai L, Fang HX, Yin TP, et al. Unusual C₁₉-diterpenoid alkaloids from Aconitum vilmorinianum var. Patentipilum [J]. Phytochem Lett, 2015, 14: 106-110.
- [7] Cheng H, Zeng FH, Ma Ding, *et al.* Expedient construction of the ABEF azatetracyclic ring systems of lycoctonine-type and 7, 17-seco-type C₁₉-diterpenoid alkaloids [J]. *Org Lett*, 2014, 16(9): 2299-2301.
- [8] Obaid AFF, Xu WL, Shan LH, et al. Three new lactone-type diterpenoid alkaloids from Aconitum rotundifolium Kar. & Kir [J]. Heterocycles, 2017, 94: 1903-1908.
- [9] Liu M, Cao Y, Lv DY, et al. Effect of processing on the alkaloids in Aconitum tubers by HPLC-TOF/MS [J]. J Pharm Anal, 2017, 7(3): 170-175.
- [10] Lai YC, Tai CJ, El-Shazly M, et al. Quantification and simplified detoxification investigation on Fuzi, root of Aconitum carmichaelii [J]. Nat Prod Commun, 2019, 14(10): 1-8.
- [11] Huang D, Zhao XQ, Liu XX, et al. Determination of five aminoalcohol-diterpenoid alkaloids in the lateral root of Aconitum carmichaeli by HPLC-ELSD with SPE [J]. J Chromatogr Sci, 2017, 55(9): 940-945.
- [12] Wu JJ, Zhu YF, Guo ZZ, et al. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway [J]. Phytomedicine, 2018, 44: 87-97.
- [13] Li TF, Gong N, Wang YX. Ester hydrolysis differentially reduces aconitine-induced anti-hypersensitivity and acute neurotoxicity: involvement of spinal microglial dynorphin expression and implications for *Aconitum* processing [J]. *Front Pharmacol*, 2016, 7: 367.
- [14] Tarbe M, de Pomyers H, Mugnier L, et al. Gram-scale purification of aconitine and identification of lappaconitine in Aconitum karacolicum [J]. Fitoterapia, 2017, 120: 85-92.
- [15] Jiang GY, Qin LL, Gao F, et al. Fifteen new diterpenoid alkaloids from the roots of Aconitum kirinense Nakai [J]. Fitoterapia, 2020, 141: 104477.
- [16] Tan JJ, Tan CH, Ruan BQ, et al. Two new 18-carbon norditerpenoid alkaloids from Aconitum sinomontanum [J]. J Asian Nat Prod Res, 2006, 8(6): 535-9.
- [17] Sun JG, Peng Y, Wu H, et al. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, is a CYP2D6 inhibitor of human, monkey, and dog isoforms [J]. Drug Metab Dispos, 2015, 43(5): 713-724.
- [18] Wang XY, Shu XK, Wang X, et al. Preparative isolation of seven diterpenoid alkaloids from Aconitum coreanum by pHzone-refining counter-current chromatography [J]. Molecules, 2014, 19(8): 12619-12629.
- [19] Giri A, Banerjee S, Ahuja PS, et al. Production of hairy roots in Aconitum heterophyllum wall. using Agrobacterium rhizogenes [J]. In Vitro Cell Dev Biol, 1997, 33: 280-284.
- [20] Xu WL, Chen L, Shan LH, et al. Two new atisine-type C₂₀-

diterpenoid alkaloids from *Aconitum leucostomum* [J]. *Heterocycles*, 2016, **92**: 2059-2065.

- [21] Samanbay A, Zhao B, Aisa HA. A new denudatine type C₂₀diterpenoid alkaloid from *Aconitum sinchiangense* W. T. Wang [J]. *Nat Prod Res*, 2018, **32**(19): 2319-2324.
- [22] Li R, Wu ZJ, Zhang F, et al. Differentiation of three pairs of aconite alkaloid isomers from Aconitum nagarum var. lasiandrum by electrospray ionization tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2006, 20(2): 157-170.
- [23] Meng XH, Jiang ZB, Zhu CG, et al. Napelline-type C₂₀-diterpenoid alkaloid iminiums from an aqueous extract of "Fuzi": Solvent-/base-/acid-dependent transformation and equilibration between alcohol iminium and aza acetal forms [J]. Chin Chem Lett, 2016, 27: 993-1003.
- [24] Luo CM, Yi FL, Xia YL, et al. Comprehensive quality evaluation of the lateral root of Aconitum carmichaelii Debx. (Fuzi): simultaneous determination of nine alkaloids and chemical fingerprinting coupled with chemometric analysis [J]. J Sep Sci, 2019, 42(5): 980-990.
- [25] Xu TF, Liu S, Meng LL, et al. Bioactive heterocyclic alkaloids with diterpene structure isolated from traditional Chinese medicines [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1026: 56-66.
- [26] Zhou GH, Tang LY, Zhou XD, et al. A review on phytochemistry and pharmacological activities of the processed lateral root of Aconitum carmichaelii Debeaux [J]. J Ethnopharmacol, 2015, 160: 173-193.
- [27] Fu M, Wu M, Qiao Y, et al. Toxicological mechanisms of Aconitum alkaloids [J]. Pharmazie, 2006, 61(9): 735-741.
- [28] Chan TYK. Aconite poisoning [J]. *Clin Toxicol (Phila)*, 2009, 47(4): 279-285.
- [29] Tai CJ, El-Shazly M, Wu TY, et al. Clinical aspects of Aconitum preparations [J]. Planta Med, 2015, 81(12-13): 1017-1028.
- [30] Zhang H, Sun S, Zhang W, et al. Biological activities and pharmacokinetics of aconitine, benzoylaconine, and aconine after oral administration in rats [J]. *Drug Test Anal*, 2016, 8(8): 839-846.
- [31] Wang YG, Wang SQ, Liu YX, et al. Characterization of metabolites and cytochrome P450 isoforms involved in the microsomal metabolism of aconitine [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2006, 844(2): 292-300.
- [32] Wu JJ, Guo ZZ, Zhu YF, et al. A systematic review of pharmacokinetic studies on herbal drug Fuzi: implications for Fuzi as personalized medicine [J]. *Phytomedicine*, 2018, 44: 187-203.
- [33] Elshazly M, Tai CJ, Wu TY, *et al.* Use, history, and liquid chromatography/mass spectrometry chemical analysis of *Aconitum* [J]. *J Food Drug Anal*, 2016, 24(1): 29-45.
- [34] He YN, Zhang DK, Lin JZ, *et al.* Cardiac function evaluation for a novel one-step detoxification product of Aconiti Lateralis Radix Praeparata [J]. *Chin Med*, 2018, **13**: 62.
- [35] Wu H, Liu X, Gao ZY, et al. Anti-myocardial infarction effects of Radix Aconiti Lateralis Preparata extracts and their influence on small molecules in the heart using matrix-assisted laser desorption/ionization-mass spectrometry imaging [J]. Int J Mol Sci, 2019, 20(19): 4837.
- [36] Xiong L, Peng C, Xie XF, et al. Alkaloids isolated from the lateral root of *Aconitum carmichaelii* [J]. *Molecules*, 2012, 17(8): 9939-9946.
- [37] Liu XX, Jian XX, Cai XF, et al. Cardioactive C₁₉-diterpenoid alkaloids from the lateral roots of Aconitum carmichaeli "Fuzi" [J]. Chem Pharm Bull, 2012, 60: 144-149.
- [38] Yun-Choi HS, Pyo MK, Park KM, et al. Anti-thrombotic ef-

fects of higenamine [J]. Planta Med, 2001, 67(7): 619-622.

- [39] Yun-Choi HS, Pyo MK, Chang KC, et al. The effects of higenamine on LPS-induced experimental disseminated intravascular coagulation (DIC) in rats [J]. *Planta Med*, 2002, 68(4): 326-329.
- [40] Mana M, Syunji H, Masaru S, *et al.* Mesaconitine-induced relaxation in rat aorta: involvement of Ca²⁺ influx and nitric-oxide synthase in the endothelium [J]. *Eur J Pharmacol*, 2002, 436(3): 217-225.
- [41] Bai Y, Du SH, Li F, et al. Histone deacetylase-high mobility group box-1 pathway targeted by hypaconitine suppresses the apoptosis of endothelial cells [J]. Exp Biol Med (Maywood), 2017, 242(5): 527-535.
- [42] Jian XX, Tang P, Liu XX, *et al.* Structure-cardiac activity relationship of C₁₉-diterpenoid alkaloids [J]. *Nat Prod Commun*, 2012, 7(6): 713-720.
- [43] Zhang ZT, Jian XX, Ding JY, et al. Further studies on structure-cardiac activity relationships of diterpenoid alkaloids [J]. Nat Prod Commun, 2015, 10(12): 2075-2084.
- [44] Farley A, Johnstone C, Hendry C, *et al.* Nervous system: part 1 [J]. *Nurs Stand*, 2014, **28**(31): 46-51.
- [45] Sousa AMM, Meyer KA, Santpere G, et al. Evolution of the human nervous system function, structure, and development [J]. Cell, 2017, 170(2): 226-247.
- [46] Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain [J]. *Cell Mol Life Sci*, 2017, 74(18): 3275-3291.
- [47] Chen HG, Xie KL, Chen YJ, et al. Nrf2/HO-1 signaling pathway participated in the protection of hydrogen sulfide on neuropathic pain in rats [J]. Int Immunopharmacol, 2019, 75: 105746.
- [48] Zhao DK, Ai HL, Zi SH, et al. Four new C₁₈-diterpenoid alkaloids with analgesic activity from Aconitum weixiense [J]. *Fitoterapia*, 2013, 91: 280-283.
- [49] Wu YZ, Shao S, Guo QL, et al. Aconicatisulfonines A and B, analgesic zwitterionic C₂₀-diterpenoid alkaloids with a rearranged atisane skeleton from Aconitum carmichaelii [J]. Org Lett, 2019, 21(17): 6850-6854.
- [50] Nesterova YV, Poveťyeva TN, Suslov NI, et al. Analgesic activity of diterpene alkaloids from Aconitum baikalensis [J]. Bull Exp Biol Med, 2014, 157(4): 488-491.
- [51] Wang DP, Lou HY, Huang L, et al. A novel franchetine type norditerpenoid isolated from the roots of Aconitum carmichaeli Debx. with potential analgesic activity and less toxicity [J]. Bioorg Med Chem Lett, 2012, 22(13): 4444-4446.
- [52] Suzuki T, Miyamoto K, Yokoyama N, et al. Processed aconite root and its active ingredient neoline may alleviate oxaliplatin-induced peripheral neuropathic pain [J]. J Ethnopharmacol, 2016, 186: 44-52.
- [53] Tanimura Y, Yoshida M, Ishiuchi K, *et al.* Neoline is the active ingredient of processed aconite root against murine peripheral neuropathic pain model, and its pharmacokinetics in rats [J]. *J Ethnopharmacol*, 2019, **241**: 111859.
- [54] Shao S, Xia H, Hu M, et al. Isotalatizidine, a C₁₉-diterpenoid alkaloid, attenuates chronic neuropathic pain through stimulating ERK/CREB signaling pathway-mediated microglial dynorphin A expression [J]. J Neuroinflammation, 2020, 17(1): 13.
- [55] Sun ML, Ao JP, Wang YR, *et al.* Lappaconitine, a C₁₈-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression [J]. *Psychopharmacology (Berl)*, 2018, **235**(9): 2559-2571.
- [56] Li TF, Fan H, Wang YX. Aconitum-derived bulleyaconitine A exhibits antihypersensitivity through direct stimulating dynorphin A expression in spinal microglia [J]. J Pain, 2016,

17(5): 530-548.

- [57] Wang CF, Gerner P, Schmidt B, *et al.* Use of bulleyaconitine A as an adjuvant for prolonged cutaneous analgesia in the rat [J]. *Anesth Analg*, 2008, **107**(4): 1397-1405.
- [58] Xie MX, Yang J, Pang RP, et al. Bulleyaconitine A attenuates hyperexcitability of dorsal root ganglion neurons induced by spared nerve injury: the role of preferably blocking Nav1.7 and Nav1.3 channels [J]. *Mol Pain*, 2018, 14: 174480691877 8491.
- [59] Wang CF, Gerner P, Wang SY, et al. Bulleyaconitine A isolated from Aconitum plant displays long-acting local anesthetic properties in vitro and in vivo [J]. Anesthesiology, 2007, 107(1): 82-90.
- [60] Borcsa B, Fodor L, Csupor D, et al. Diterpene alkaloids from the roots of Aconitum moldavicum and assessment of Nav 1.2 sodium channel activity of Aconitum alkaloids [J]. Planta Med, 2014, 80(2-3): 231-236.
- [61] Ray B, Simon JR, Lahiri DK. Determination of high-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) activity in the same population of cultured cells [J]. *Brain Res*, 2009, **1297**: 160-168.
- [62] Ferreira-Vieira TH, Guimaraes IM, Silva FR, et al. Alzheimer' s disease: targeting the cholinergic system [J]. Curr Neuropharmacol, 2016, 14(1): 101-115.
- [63] Ray B, Bailey JA, Simon JR, *et al.* High-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) activity in neuronal cultures for mechanistic and drug discovery studies [J]. *Curr Protoc Neurosci*, 2012, **60**(1): 7.23.1-7.23.16.
- [64] Ahmad H, Ahmad S, Shah SAA, et al. Selective dual cholinesterase inhibitors from Aconitum laeve [J]. J Asian Nat Prod Res, 2018, 20(2): 172-181.
- [65] Ahmad H, Ahmad S, Shah SAA, et al. Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum [J]. Bioorg Med Chem, 2017, 25(13): 3368-3376.
- [66] Luo ZH, Chen Y, Sun XY, et al. A new diterpenoid alkaloid from Aconitum hemsleyanum [J]. Nat Prod Res, 2020, 34(9): 1331-1336.
- [67] Nisar M, Ahmad M, Wadood N, et al. New diterpenoid alkaloids from Aconitum heterophyllum Wall: selective butyrylcholinestrase inhibitors [J]. J Enzyme Inhib Med Chem, 2009, 24(1): 47-51.
- [68] Nojima H, Okazaki M, Kimura I. Counter effects of higenamine and coryneine, components of aconite root, on acetylcholine release from motor nerve terminal in mice [J]. J Asian Nat Prod Res, 2000, 2(3): 195-203.
- [69] Yamanaka H, Doi A, Ishibashi H, et al. Aconitine facilitates spontaneous transmitter release at rat ventromedial hypothalamic neurons [J]. Br J Pharmacol, 2002, 135(3): 816-822.
- [70] Nesterova YV, Poveťeva TN, Suslov NI, et al. Correction of cholinergic abnormalities in mnestic processes with diterpene alkaloid songorine [J]. Bull Exp Biol Med, 2018, 165(1): 10-13.
- [71] Stephenson J, Nutma E, Van DVP, et al. Inflammation in CNS neurodegenerative diseases [J]. Immunology, 2018, 154(2): 204-219.
- [72] Cordaro M, Cuzzocrea S, Crupi R. An update of palmitoylethanolamide and luteolin effects in preclinical and clinical studies of neuroinflammatory events [J]. *Antioxidants (Basel)*, 2020, 9(3): 216.
- [73] Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases [J]. *Int J Med Sci*, 2019, **16**(10): 1386-1396.
- [74] Javed H, Thangavel R, Selvakumar GP, et al. NLRP3 inflam-

masome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson's disease [J]. *Int Immunopharmacol*, 2020, **83**: 106441.

- [75] Nesterova YV, Povetieva TN, Suslov NI, et al. Antidepressant activity of diterpene alkaloids of Aconitum baicalense Turcz [J]. Bul Exp Biol Med, 2011, 151(4): 425-428.
- [76] Wang J, Meng XH, Chai T, et al. Diterpenoid alkaloids and one lignan from the roots of Aconitum pendulum Busch [J]. Nat Prod Bioprospect, 2019, 9(6): 419-423.
- [77] Li J, Ren W, Huang XJ, et al. Bullatine A, a diterpenoid alkaloid of the genus Aconitum, could attenuate ATP-induced BV-2 microglia death/apoptosis via P2X receptor pathways [J]. Brain Res Bull, 2013, 97: 81-85.
- [78] Jiang BY, Lin S, Zhu CG, et al. Diterpenoid alkaloids from the lateral root of Aconitum carmichaelii [J]. J Nat Prod, 2012, 75(6): 1145-1159.
- [79] Zhao XY, Wang Y, Li Y, et al. Songorine, a diterpenoid alkaloid of the genus Aconitum, is a novel GABA(A) receptor antagonist in rat brain [J]. Neurosci Lett, 2003, 337(1): 33-36.
- [80] Nesterova YV, Poveťeva TN, Suslov NI, et al. Anxiolytic activity of diterpene alkaloid songorine [J]. Bull Exp Biol Med, 2015, 159(5): 620-622.
- [81] Song MK, Liu H, Jiang HL, et al. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K⁺ channels in rat hippocampal neurons [J]. *Neuroscience*, 2008, 155(2): 469-475.
- [82] Xu Tengfei, Li Shizhe, Sun Yufei, et al. Systematically characterize the absorbed effective substances of Wutou Decoction and their metabolic pathways in rat plasma using UHPLC-Q-TOF-MS combined with a target network pharmacological analysis [J]. J Pharm Biomed Anal, 2017, 141: 95-107.
- [83] Chaplin DD. Overview of the immune response [J]. J Allergy Clin Immunol, 2010, 125(Suppl 2): S3-23.
- [84] Alvarez F, Al-Aubodah TA, Yang YH, et al. Mechanisms of T_{REG} cell adaptation to inflammation [J]. J Leukoc Biol, 2020, 108(2): 559-571.
- [85] Han X, Vesely MD, Yang W, et al. PD-1H (VISTA)-mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus [J]. Sci Transl Med, 2019, 11(522): eaax1159.
- [86] Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis [J]. *Immunol Rev*, 2020, 294(1): 177-187.
- [87] Jäger U, D'Sa S, Schörgenhofer C, et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease: a first-in-human trial [J]. Blood, 2019, 133(9): 893-901.
- [88] Yin TP, Shu Y, Zhou H, et al. Nagarines A and B, two novel 8, 15-seco diterpenoid alkaloids from Aconitum nagarum [J]. Fitoterapia, 2019, 135: 1-4.
- [89] Duan XY, Zhao DK, Shen Y. Two new bis-C₂₀-diterpenoid alkaloids with anti-inflammation activity from *Aconitum bulleyanum* [J]. *J Asian Nat Prod Res*, 2019, 21(4): 323-330.
- [90] Nesterova YV, Povetieva TN, Suslov NI, et al. Anti-inflammatory activity of diterpene alkaloids from Aconitum baikalense [J]. Bull Exp Biol Med, 2014, 156(5): 665-668.
- [91] Wang F, Yue ZG, Xie P, et al. C₁₉-norditerpenoid alkaloids from Aconitum szechenyianum and their effects on LPS-activated NO production [J]. Molecules, 2016, 21(9): 1175.
- [92] Shaheen F, Ahmad M, Khan MTH, et al. Alkaloids of Aconitum laeve and their anti-inflammatory antioxidant and tyrosinase inhibition activities [J]. *Phytochemistry*, 2005, 66(8): 935-940.
- [93] Zeng XZ, He LG, Wang S, et al. Aconine inhibits RANKL-in-

duced osteoclast differentiation in RAW264.7 cells by suppressing NF-*k*B and NFATc1 activation and DC-STAMP expression [J]. *Acta Pharmacol Sin*, 2016, **37**(2): 255-263.

- [94] Wu GT, Du LD, Zhao L, et al. The total alkaloids of Aconitum tanguticum protect against lipopolysaccharide-induced acute lung injury in rats [J]. J Ethnopharmacol, 2014, 155(3): 1483-1491.
- [95] Wangchuk P, Navarro S, Shepherd C, *et al.* Diterpenoid alkaloids of *Aconitum laciniatum* and mitigation of inflammation by 14-O-acetylneoline in a murine model of ulcerative colitis [J]. *Sci Rep*, 2015, **5**: 12845.
- [96] Deng X, Zheng LP, Mu ZQ, et al. The inhibitory effect of Aconiti Sinomontani Radix extracts on the proliferation and migration of human synovial fibroblast cell line SW982 [J]. J Ethnopharmacol, 2018, 213: 321-327.
- [97] Song B, Jin BL, Li YZ, et al. C₁₉-norditerpenoid alkaloids from Aconitum szechenyianum [J]. Molecules, 2018, 23(5): 1108.
- [98] Yu HH, Li M, Li YB, *et al.* Benzoylaconitine inhibits production of IL-6 and IL-8 *via* MAPK, Akt, NF-κB signaling in IL-1β-induced human synovial cells [J]. *Biol Pharm Bull*, 2020, 43(2): 334-339.
- [99] Duan WJ, Chen JM, Wu Y, et al. Protective effect of higenamine ameliorates collagen-induced arthritis through heme oxygenase-1 and PI3K/Akt/Nrf-2 signaling pathways [J]. Exp Ther Med, 2016, 12(5): 3107-3112.
- [100] Zhang ZY, Li MC, Wang Y, et al. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury [J]. Int Immunopharmacol, 2014, 23(2): 681-687.
- [101] Li XD, Gu LW, Yang L, et al. Aconitine: a potential novel treatment for systemic lupus erythematosus [J]. J Pharmacol Sci, 2017, 133(3): 115-121.
- [102] Chen L, Shan LH, Xu WL, et al. A new C₂₀-diterpenoid alkaloid from Aconitum soongaricum var. pubescens [J]. Nat Prod Res, 2017, 31(5): 523-528.
- [103] Liang XX, Chen L, Song L, *et al.* Diterpenoid alkaloids from the root of *Aconitum sinchiangense* W. T. Wang with their antitumor and antibacterial activities [J]. *Nat Prod Res*, 2017, 31(17): 2016-2023.
- [104] De IC, Reina M, Gavín JA, et al. In vitro cytotoxicity of norditerpenoid alkaloids [J]. Z Naturforsch C J Biosci, 2006, 61(1-2): 11-18.
- [105] He JB, Luan J, Lv XM, et al. Navicularines A–C: New diterpenoid alkaloids from Aconitum naviculare and their cytotoxic activities [J]. Fitoterapia, 2017, 120: 142-145.
- [106] Yamashita H, Miyao M, Hiramori K, et al. Cytotoxic diterpenoid alkaloid from Aconitum japonicum subsp. Subcuneatum [J]. J Nat Med, 2020, 74(1): 83-89.
- [107] He YQ, Yao BH, Ma ZY. Diterpenoid alkaloids from a Tibetan medicinal plant *Aconitum richardsonianum* var. *pseudosessili florum* and their cytotoxic activity [J]. *J Pharm Anal*, 2011, 1(1): 57-59.
- [108] Zhang H, Guo ZJ, Han L, *et al.* The antitumor effect and mechanism of taipeinine A, a new C₁₉-diterpenoid alkaloid from *Aconitum taipeicum*, on the HepG2 human hepatocellular carcinoma cell line [J]. *J Buon*, 2014, **19**(3): 705-712.
- [109] Fan YP, Jiang YD, Liu JJ, et al. The anti-tumor activity and mechanism of alkaloids from Aconitum szechenyianum Gay [J]. Bioorg Med Chem Lett, 2016, 26(2): 380-387.
- [110] Gao F, Li YY, Wang D, et al. Diterpenoid alkaloids from the Chinese traditional herbal "Fuzi" and their cytotoxic activity [J]. *Molecules*, 2012, 17(5): 5187-5194.
- [111] Qi XZ, Wang L, Wang H, et al. Aconitine inhibits the proliferation of hepatocellular carcinoma by inducing apoptosis [J].

Int J Clin Exp Pathol, 2018, 11(11): 5278-5289.

- [112] Ji BL, Xia LP, Zhou FX, et al. Aconitine induces cell apoptosis in human pancreatic cancer via NF-κB signaling pathway [J]. Eur Rev Med Pharmacol Sci, 2016, 20(23): 4955-4964.
- [113] Feng HT, Zhao WW, Lu JJ, *et al.* Hypaconitine inhibits TGF- β 1-induced epithelial-mesenchymal transition and suppresses adhesion, migration, and invasion of lung cancer A549 cells [J]. *Chin J Nat Med*, 2017, **15**(6): 427-435.
- [114] Xu Y, Guo ZJ, Wu N. Two new amide alkaloids with antileukaemia activities from *Aconitum taipeicum* [J]. *Fitoterapia*, 2010, 81(8): 1091-1093.
- [115] Guo ZJ, Xu Y, Zhang H, et al. New alkaloids from Aconitum taipaicum and their cytotoxic activities [J]. Nat Prod Res, 2014, 28(3): 164-168.
- [116] Yin TP, Cai L, He JM, et al. Three new diterpenoid alkaloids from the roots of Aconitum duclouxii [J]. J Asian Nat Prod Res, 2014, 16(4): 345-350.
- [117] Yin TP, Cai L, Zhou H, et al. A new C₁₉-diterpenoid alkaloid from the roots of Aconitum duclouxii [J]. Nat Prod Res, 2014, 28(19): 1649-1654.
- [118] Ahmad M, Ahmad W, Ahmad M, et al. Norditerpenoid alkaloids from the roots of *Aconitum heterophyllum* Wall with antibacterial activity [J]. J Enzyme Inhib Med Chem, 2008, 23(6): 1018-1022.
- [119] Yu J, Yin TP, Wang JP, et al. A new C₂₀-diterpenoid alkaloid from the lateral roots of Aconitum carmichaeli [J]. Nat Prod Res, 2017, 31(2): 228-232.
- [120] Yuan CL, Wang XL. Isolation of active substances and bioactivity of Aconitum sinomontanum Nakai [J]. Nat Prod Res, 2012, 26(22): 2099-2102.
- [121] Shi YB, Liu L, Shao W, et al. Microcalorimetry studies of the antimicrobial actions of Aconitum alkaloids [J]. J Zhejiang Univ Sci B, 2015, 16(8): 690-695.
- [122] Hu ZX, An Q, Tang HY, et al. Acoapetaludines A–K, C₂₀ and C₁₉-diterpenoid alkaloids from the whole plants of Aconitum apetalum (Huth) B.Fedtsch [J]. Phytochemistry, 2019, 167: 112111.
- [123] Fan XR, Yang LH, Liu ZH, et al. Diterpenoid alkaloids from the whole plant of Aconitum tanguticum (Maxim.) Stapf [J]. *Phytochemistry*, 2019, 160: 71-77.
- [124] Wangchuk P, Bremner JB, Samten, et al. Antiplasmodial activity of atisinium chloride from the Bhutanese medicinal plant, Aconitum orochryseum [J]. J Ethnopharmacol, 2010, 130(3): 559-562.
- [125] Zyuz'kov GN, Zhdanov VV, Miroshnichenko LA, et al. Mechanisms of hemostimulating effect of Aconitum baicalense diterpene alkaloids [J]. Bull Exp Biol Med, 2013, 155(3): 350-353.
- [126] Zyuz'kov GN, Udut EV, Miroshnichenko LA, *et al.* Role of JAK/STAT3 signaling in functional stimulation of mesenchymal progenitor cells with alkaloid songorine [J]. *Bull Exp Biol Med*, 2018, **165**(5): 665-668.
- [127] Nesterova YV, Povetieva TN, Suslov NI, et al. Regeneratory characteristics of complex extract and isolated diterpene alkaloids of Aconitum baikalense [J]. Bull Exp Biol Med, 2012, 152(4): 439-443.
- [128] Yin TP, Cai L, Xing Y, et al. Alkaloids with antioxidant activities from Aconitum handelianum [J]. J Asian Nat Prod Res, 2016, 18(6): 603-610.
- [129] Yin TP, Cai L, Fang HX, et al. Diterpenoid alkaloids from Aconitum vilmorinianum [J]. Phytochemistry, 2015, 116: 314-319.
- [130] Liu F, Tan XX, Han X, *et al.* Cytotoxicity of *Aconitum* alkaloid and its interaction with calf thymus DNA by multi-spec-

troscopic techniques [J]. Sci Rep, 2017, 7(1): 14509.

- [131] Zong XX, Yan XJ, Wu JL, et al. Potentially cardiotoxic diterpenoid alkaloids from the roots of Aconitum carmichaelii [J]. J Nat Prod, 2019, 82(4): 980-989.
- [132] Nie JH, Wang F, Ji TF, et al. Assessment of in vitro cardiotoxicity of extract fractions and diterpene alkaloids from *Aconitum leucostomum* Worosch: a short communication [J]. *J Pharm Biomed Anal*, 2017, 137: 84-89.
- [133] Sun GB, Sun H, Meng XB, et al. Aconitine-induced Ca²⁺ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats [J]. *Toxicol Appl Pharmacol*, 2014, 279(1): 8-22.
- [134] Li MT, Xie XF, Chen HM, et al. Aconitine induces cardiotoxicity through regulation of calcium signaling pathway in zebrafish embryos and in H9c2 cells [J]. J Appl Toxicol, 2020, 40(6): 780-793.
- [135] Gao XT, Zhang XC, Hu J, et al. Aconitine induces apoptosis in H9c2 cardiac cells via mitochondria-mediated pathway [J]. Mol Med Rep, 2018, 17(1): 284-292.
- [136] Peng F, Zhang N, Wang CT, *et al.* Aconitine induces cardiomyocyte damage by mitigating BNIP3-dependent mitophagy and the TNFα-NLRP3 signalling axis [J]. *Cell Prolif*, 2020, **53**(1): e12701.
- [137] Li YF, Tu DN, Xiao H, et al. Aconitine blocks HERG and Kv1.5 potassium channels [J]. J Ethnopharmacol, 2010, 131(1): 187-195.
- [138] Liu F, Han X, Li N, et al. Aconitum alkaloids induce cardiotoxicity and apoptosis in embryonic zebrafish by influencing the expression of cardiovascular relative genes [J]. Toxicol Lett, 2019, 305: 10-18.
- [139] Xie SL, Jia Y, Liu AM, et al. Hypaconitine-induced QT prolongation mediated through inhibition of KCNH2 (hERG) potassium channels in conscious dogs [J]. J Ethnopharmacol, 2015, 166: 375-379.
- [140] Chen SPL, Ng SW, Poon WT, et al. Aconite poisoning over 5 years: a case series in Hong Kong and lessons towards herbal safety [J]. Drug Saf, 2012, 35(7): 575-587.
- [141] Chan TYK. Contributory factors in herb-induced fatal aconite poisoning [J]. *Forensic Sci Int*, 2012, 223(1-3): 40-43.
- [142] Chan TYK. Incidence and causes of *Aconitum* alkaloid poisoning in Hong Kong from 1989 to 2010 [J]. *Phytother Res*, 2015, **29**(8): 1107-1111.
- [143] Smith SW, Shah RR, Hunt JL, et al. Bidirectional ventricular tachycardia resulting from herbal aconite poisoning [J]. Ann Emerg Med, 2005, 45(1): 100-101.
- [144] Coulson JM, Caparrotta TM, Thompson JP. The management of ventricular dysrhythmia in aconite poisoning [J]. *Clin Toxicol (Phila*), 2017, **55**(5): 313-321.
- [145] Chan TYK. Aconite poisoning presenting as hypotension and bradycardia [J]. *Hum Exp Toxicol*, 2009, 28(12): 795-797.
- [146] Lin CC, Phua DH, Deng JF, et al. Aconitine intoxication mimicking acute myocardial infarction [J]. *Hum Exp Toxicol*, 2011, **30**(7): 782-785.
- [147] Cho YS, Choi HW, Chun BJ, et al. Quantitative analysis of aconitine in body fluids in a case of aconitine poisoning [J]. Forensic Sci Med Pathol, 2020, 16(2): 330-334.
- [148] Yang HQ, Wang H, Liu YB, et al. The PI3K/Akt/mTOR signaling pathway plays a role in regulating aconitine-induced autophagy in mouse liver [J]. Res Vet Sci, 2019, 124: 317-320.
- [149] Cong JJ, Ruan YL, Lyu QL, et al. A proton-coupled organic cation antiporter is involved in the blood-brain barrier transport of Aconitum alkaloids [J]. J Ethnopharmacol, 2020, 252: 112581.
- [150] Ye L, Yang XS, Yang Z, *et al.* The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypa-

conitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCK II cells [J]. *Toxicol Lett*, 2013, **216**(2-3): 86-99.

- [151] Tang L, Gong Y, Lv C, et al. Pharmacokinetics of aconitine as the targeted marker of Fuzi (*Aconitum carmichaeli*) following single and multiple oral administrations of Fuzi extracts in rat by UPLC/MS/MS [J]. *J Ethnopharmacol*, 2012, **141**(2): 736-741.
- [152] Yang CP, Zhang TH, Li Z, et al. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: in vitro, in situ, in vivo and in silico studies [J]. Toxicol Appl Pharmacol, 2013, 273(3): 561-568.
- [153] Yang CP, Li Z, Zhang TH, et al. Transcellular transport of aconitine across human intestinal Caco-2 cells [J]. Food Chem Toxicol, 2013, 57: 195-200.
- [154] Li N, Tsao R, Sui ZG, *et al.* Intestinal transport of pure diestertype alkaloids from an aconite extract across the Caco-2 cell monolayer model [J]. *Planta Med*, 2012, **78**(7): 692-697.
- [155] Liu XX, Tang MH, Liu TH, et al. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UP-LC-MS/MS [J]. Xenobiotica, 2019, 49(1): 71-79.
- [156] Zhang H, Wu Q, Li WH, et al. Absorption and metabolism of three monoester-diterpenoid alkaloids in Aconitum carmichaeli after oral administration to rats by HPLC-MS [J]. J Ethnopharmacol, 2014, 154(3): 645-652.
- [157] Feng S, Jiang J, Hu P, *et al.* A phase I study on pharmacokinetics and pharmacodynamics of higenamine in healthy Chinese subjects [J]. *Acta Pharmacol Sin*, 2012, **33**(11): 1353-1358.
- [158] Wu JJ, Lin N, Li FY, et al. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: implication for clinical drug-drug interactions [J]. Sci Rep, 2016, 6: 25343.
- [159] Dai PM, Zhu LJ, Yang XS, *et al.* Multidrug resistance-associated protein 2 is involved in the efflux of *Aconitum* alkaloids determined by MRP2-MDCK II cells [J]. *Life Sci*, 2015, **127**: 66-72.
- [160] Zhang YD, Zong XX, Wu JL, et al. Pharmacokinetics and tissue distribution of eighteen major alkaloids of Aconitum carmichaelii in rats by UHPLC-QQQ-MS [J]. J Pharm Biomed Anal, 2020, 185: 113226.
- [161] Ji XY, Yang MB, Or KH, et al. Tissue accumulations of toxic Aconitum alkaloids after short-term and long-term oral admini-

istrations of clinically used Radix Aconiti Lateralis preparations in rats [J]. *Toxins (Basel)*, 2019, **11**(6): 353.

- [162] Niitsu H, Fujita Y, Fujita S, et al. Distribution of Aconitum alkaloids in autopsy cases of aconite poisoning [J]. Forensic Sci Int, 2013, 227(1-3): 111-117.
- [163] Gerth K, Kodidela S, Mahon M, et al. Circulating extracellular vesicles containing xenobiotic metabolizing CYP enzymes and their potential roles in extrahepatic cells via cell-cell interactions [J]. Int J Mol Sci, 2019, 20(24): 6178.
- [164] Zhang M, Peng CS, Li XB. Human intestine and liver microsomal metabolic differences between C₁₉-diester and monoester diterpenoid alkaloids from the roots of *Aconitum carmichaelii* Debx [J]. *Toxicol In Vitro*, 2017, **45**(Pt3): 318-333.
- [165] Ye L, Yang XS, Lu LL, et al. Monoester-diterpene Aconitum alkaloid metabolism in human liver microsomes: predominant role of CYP3A4 and CYP3A5 [J]. Evid Based Complement Alternat Med, 2013, 2013: 941093.
- [166] Tang L, Ye L, Lv C, et al. Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes [J]. *Toxicol Lett*, 2011, 202(1): 47-54.
- [167] Ye L, Tang L, Gong Y, et al. Characterization of metabolites and human P450 isoforms involved in the microsomal metabolism of mesaconitine [J]. *Xenobiotica*, 2011, 41(1): 46-58.
- [168] Ye L, Wang T, Yang CH, et al. Microsomal cytochrome P450mediated metabolism of hypaconitine, an active and highly toxic constituent derived from Aconitum species [J]. Toxicol Lett, 2011, 204(1): 81-91.
- [169] Zhang NN, Lian ZQ, Peng XY, et al. Applications of higenamine in pharmacology and medicine [J]. J Ethnopharmacol, 2017, 196: 242-252.
- [170] Wen JX, Zhang L, Wang J, et al. Therapeutic effects of higenamine combined with [J]. J Cell Mol Med, 2020, 24(7): 4036-4050.
- [171] Zhu HQ, Xu J, Shen KF, et al. Bulleyaconitine A depresses neuropathic pain and potentiation at C-fiber synapses in spinal dorsal horn induced by paclitaxel in rats [J]. Exp Neurol, 2015, 273: 263-72.
- [172] Zhang M, Peng Y, Wang MY, et al. The influence of compatibility of Si-Ni decoction with metabolism in intestinal bacteria on transports of toxic diterpenoid alkaloids from processed aconite root across Caco-2 monolayers [J]. J Ethnopharmacol, 2019, 228: 164-178.

Cite this article as: MI Li, LI Yu-Chen, SUN Meng-Ru, ZHANG Pei-Lin, LI Yi, YANG Hua. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on *Aconitum* alkaloids [J]. *Chin J Nat Med*, 2021, **19**(7): 505-520.

