[1] |
Mei Y, Dai X, Yang W, et al. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum [J]. Int. J. Biol. Macromol., 2015, 77: 330-335. doi: 10.1016/j.ijbiomac.2015.03.042 |
[2] |
Lu Y, Xu T, Xiong L, et al. Clinical observation of terbinafine combined with keratolytic gel for the treatment of dermatophyte infection [J]. Chin. J. Dermatovenereol. Integr. Tradit. West. Med., 2018, 17: 509-511. |
[3] |
Li Z, Abula A, Abulizi A, et al. Ellagic acid inhibits Trichophyton rubrum growth via affecting ergosterol biosynthesis and apoptotic induction [J]. Evid. Based Complementary Altern. Med., 2020, 2020: 7305818. |
[4] |
Huang R, Wang S. Research progress of Chinese herbal medicine against dermatophytes [J]. Chin. J. Control Endem. Dis., 2020, 35: 432-434. |
[5] |
Monod M. Antifungal resistance in dermatophytes: Emerging problem and challenge for the medical community [J]. J Mycol Med., 2019, 29: 283-284. doi: 10.1016/j.mycmed.2019.100913 |
[6] |
Tian J, Ban X, Zeng H, et al. In vitro and in vivo activity of essential oil from dill (Anethum graveolens L. ) against fungal spoilage of cherry tomatoes [J]. Food Control, 2011, 22: 1992-1999. doi: 10.1016/j.foodcont.2011.05.018 |
[7] |
Shrestha SK, Garzan A, Garneau-Tsodikova S. Novel alkylated azoles as potent antifungals [J]. Eur. J. Med. Chem., 2017, 133: 309-318. doi: 10.1016/j.ejmech.2017.03.075 |
[8] |
Li Z, Guo X, Dawuti G, Aibai S. Antifungal activity of ellagic acid in vitro and in vivo [J]. Phytother. Res., 2015, 29: 1019-1025. doi: 10.1002/ptr.5340 |
[9] |
Cantelli BAM, Bitencourt TA, Komoto TT, et al. Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum [J]. Biomed. Pharmacother., 2017, 96: 1389-1394. doi: 10.1016/j.biopha.2017.11.051 |
[10] |
Luo N, Jin L, Yang C, et al. Antifungal activity and potential mechanism of magnoflorine against Trichophyton rubrum [J]. J. Antibiot., 2020, 74: 206-214. |
[11] |
Lin M, Yuan Z, Hu D, et al. Effect of loureirin A against Candida albicans biofilms [J]. Chin. J. Nat. Med., 2019, 17: 616-623. |
[12] |
Wang Y, Sun Y, Wang J, et al. Antifungal activity and action mechanism of the natural product cinnamic acid against Sclerotinia sclerotiorum [J]. Plant Dis., 2019, 103: 944-950. doi: 10.1094/PDIS-08-18-1355-RE |
[13] |
Song X, Wen X, He J, et al. Phytochemical components and biological activities of Artemisia argyi [J]. J. Funct. Foods, 2019, 52: 648-662. doi: 10.1016/j.jff.2018.11.029 |
[14] |
Lan X, Zhang Y, Zhu L, et al. Research progress on chemical constituents from Artemisiae Argyi Folium and their pharmacological activities and quality control [J]. China J. Chin. Mater. Med., 2020, 45: 4017-4030. |
[15] |
Guan X, Ge D, Li S, et al. Chemical composition and antimicrobial activities of Artemisia argyi Lévl. et Vant essential oils extracted by simultaneous distillation-extraction, subcritical extraction and hydrodistillation [J]. Molecules, 2019, 24: 483. doi: 10.3390/molecules24030483 |
[16] |
Zheng K, Zhong X, Zhang H. Advances in research on constituents and pharmacological effects of Artemisia argyi essential oil [J]. Chin. J. Exp. Tradit. Med. Formulae, 2020, 26: 224-234. |
[17] |
Wang YL. Toxicological safety of Artemisia argyi extract and its effect on immune and antioxidant functions in mice. Inner MongoliaAgricultural University 2018, Hohhot, Inner Mongolia. |
[18] |
Chen L, Li J, Zhu Y, et al. Weed suppression and molecular mechanisms of isochlorogenic acid A isolated from Artemisia argyi extract via an activity-guided method [J]. J. Agric. Food Chem., 2022, 70: 1494-1506. doi: 10.1021/acs.jafc.1c06417 |
[19] |
Chen C, Long L, Zhang F, et al. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum [J]. PLoS ONE, 2018, 13: e0194284. doi: 10.1371/journal.pone.0194284 |
[20] |
Komoto TT, Bitencourt TA, Silva G, et al. Gene expression response of Trichophyton rubrum during coculture on keratinocytes exposed to antifungal agents [J]. Evid. Based Complementary Altern. Med., 2015, 2015: 180535. |
[21] |
Chen L, Li J, Zhu Y, et al. Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogen-activated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin [J]. Front. Plant Sci., 2022, 12: 802198. doi: 10.3389/fpls.2021.802198 |
[22] |
Zhang R, Zhao J, Li L. Morphological and transcriptome analyses provide insights into growth inhibition of trichophyton rubrum caused by laser irradiation [J]. Evid. Based Complementary Altern. Med., 2020, 2020: 6052461. |
[23] |
Yang S, Liu H, Wei X, et al. BrWAX2 plays an essential role in cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Theor. Appl. Genet., 2022, 135: 693-707. doi: 10.1007/s00122-021-03993-x |
[24] |
Liu X, Liu J, Jiang T, et al. Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L. ) Schott [J]. J. Ethnopharmacol., 2018, 226: 36-43. doi: 10.1016/j.jep.2018.07.030 |
[25] |
Valarezo E, Flores-Maza P, Cartuche L, et al. Phytochemical profile, antimicrobial and antioxidant activities of essential oil extracted from Ecuadorian species Piper ecuadorense sodiro [J]. Nat. Prod. Res., 2021, 35: 6014-6019. doi: 10.1080/14786419.2020.1813138 |
[26] |
Lu H, Jia Y, Peng Y, et al. Oxyresveratrol, a stilbene compound from Morus alba L. Twig extract active against Trichophyton rubrum [J]. Phytother. Res., 2017, 31: 1842-1848. doi: 10.1002/ptr.5926 |
[27] |
Han B, Xin Z, Ma S, et al. Comprehensive characterization and identification of antioxidants in Folium Artemisiae Argyi using high-resolution tandem mass spectrometry [J]. J. Chromatogr. B, 2017, 1063: 84-92. doi: 10.1016/j.jchromb.2017.08.021 |
[28] |
Lan X, Zhu L, Huang X, et al. Study on identification and quantitation of main compounds in Artemisiae Argyi Folium [J]. Chin. Tradit. Herb. Drugs, 2021, 52: 7630-7637. |
[29] |
Cortés JCG, Curto MÁ, Carvalho VSD, et al. The fungal cell wall as a target for the development of new antifungal therapies [J]. Biotechnol. Adv., 2019, 37: 107352. doi: 10.1016/j.biotechadv.2019.02.008 |
[30] |
Zeng H, Li T, Tian J, Zhang L. TUBP1 protein lead to mitochondria-mediated apoptotic cell death in Verticillium dahliae [J]. Int. J. Biochem. Cell Biol., 2018, 103: 35-44. doi: 10.1016/j.biocel.2018.08.001 |
[31] |
Randall EB, Hock M, Lopez R, et al. Quantitative analysis of mitochondrial ATP synthesis [J]. Math. Biosci., 2021, 340: 108646. doi: 10.1016/j.mbs.2021.108646 |
[32] |
Lee HS, Kim Y. Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans [J]. J. Microbiol. Biotechnol., 2022, 32: 37-45. doi: 10.4014/jmb.2110.10014 |
[33] |
Sagatova AA. Strategies to Better Target Fungal Squalene Monooxygenase [J]. J. Fungi, 2021, 7: 49. doi: 10.3390/jof7010049 |
[34] |
Zhao YG, Codogno P, Zhang Hong. Machinery, regulation and pathophysiological implications of autophagosome maturation [J]. Nat. Rev. Mol. Cell Biol., 2021, 22: 733-750. doi: 10.1038/s41580-021-00392-4 |
[35] |
Ding H, Fu R, Xie C, et al. Transcriptomic profile of human erythroleukemia cells in response to Sargassum fusiforme polysaccharide and its structure analysis [J]. Chin. J. Nat. Med., 2021, 19: 784-795. |
[36] |
Xu J, Shao X, Li Y, et al. Metabolomic Analysis and Mode of Action of Metabolites of Tea Tree Oil Involved in the Suppression of Botrytis cinerea [J]. Front. Microbiol., 2017, 2017: 1017. |
[37] |
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease [J]. Nat. Commun., 2020, 11: 102. doi: 10.1038/s41467-019-13668-3 |
[38] |
Yang S, Liu L, Li D, et al. Use of active extracts of poplar buds against Penicillium italicum and possible modes of action [J]. Food Chem., 2016, 196: 610-618. doi: 10.1016/j.foodchem.2015.09.101 |
[39] |
Li S, Zhou S, Yang W, Meng D. Gastro-protective effect of edible plant Artemisia argyi in ethanol-induced rats via normalizing inflammatory responses and oxidative stress [J]. J. Ethnopharmacol., 2018, 214: 207-217. doi: 10.1016/j.jep.2017.12.023 |
[40] |
Zhu Y, Chen L, Wei X, et al. Activity screening and evaluation of Artemisia argyi in treatment of ulcerative colitis [J]. Chin. Tradit. Herb. Drugs, 2021, 52: 4882-4891. |
[41] |
Wang X, Chen L, Fang Y. Advances in pharmacological effect of eupatilin [J]. Lishizhen Med. Mater. Med. Res., 2019, 30: 665-668. |
[42] |
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease [J]. Cell. Mol. Life Sci., 2014, 71: 2577-2604. doi: 10.1007/s00018-013-1539-2 |
[43] |
Akram M. Citric acid cycle and role of its intermediates in metabolism [J]. Cell Biochem. Biophys., 2014, 68: 475-478. doi: 10.1007/s12013-013-9750-1 |
[44] |
Nazaret C, Heiske M, Thurley K, Mazat JP. Mitochondrial energetic metabolism: A simplified model of TCA cycle with ATP production [J]. J. Theor. Biol., 2009, 258: 455-464. doi: 10.1016/j.jtbi.2008.09.037 |
[45] |
Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency [J]. Cell, 2013, 155: 160-171. doi: 10.1016/j.cell.2013.08.032 |