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Pure  drug  nanomedicines  (PDNs)  encompass  active  pharmaceutical  ingredients  (APIs),  in-
cluding macromolecules, biological  compounds, and functional  components.  They overcome
research  barriers  and  conversion  thresholds  associated  with  nanocarriers,  offering  advant-
ages  such  as  high  drug  loading  capacity,  synergistic  treatment  effects,  and  environmentally
friendly  production  methods.  This  review  provides  a  comprehensive  overview  of  the  latest
advancements  in  PDNs,  focusing  on their  essential  components, design theories, and manu-
facturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thor-
oughly analyzed to gain an in-depth understanding of their systematic characteristics. The re-
view introduces currently approved PDN products and further explores the opportunities and
challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug
cocrystals  (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the success-
ful  commercialization  and  widespread  utilization  of  PDNs  across  various  disease  domains.
Self-assembled  pure  drug  nanoparticles  (SAPDNPs),  a  next-generation  product,  still  require
extensive  translational  research.  Challenges  persist  in  transitioning  from  laboratory-scale
production to mass manufacturing and overcoming the conversion threshold from laboratory
findings to clinical applications.

 

1. Introduction

Pure  drug  nanomedicines  (PDNs)  emerged  as  a  promising
field of theranostics, integrating diverse disciplines such as phys-
ics,  mathematics,  materials  science,  pharmacy,  chemistry,  bio-
logy, and engineering 1–4. Drug delivery represents the most pre-
valent application of nanomedicines, accounting for 78% of glob-
al  sales  and  58%  of  patent  applications  5,  6.   Among  the  various
types of nanomedicines approved by the U.S. Food and Drug Ad-
ministration  (FDA),  lipid-based  nanoparticles,  particularly  lipo-
somes,  are  the  most  common,  followed  by  micelles  (primarily
polymer-based)  and  nanocrystals  7–14.  However,  liposomes  and
polymer-based nanomicelles face potential  limitations,  including
relatively  low  drug  loading  capacity,  high  production  costs,  and
diffcuclty  of  mass  production  7,  12,  15.  In  contrast,  PDNs  offer  the
general  advantages  of  nanomedicines,  such  as  specific  loading
capabilities, high therapeutic  efficacy, and targeted delivery.  Ad-
ditionally, PDNs circumvent issues are  associated with immuno-
toxicity,  low loading capacity caused by carriers, and high costs,
and facilitate industrial production 16, 17.

Published  scientific  articles  related  to  PDNs  have  explored
various  therapeutic  applications,  including  cancer,  infection,
autoimmune diseases, inflammation, and others 18–20. Convention-
al chemotherapy is restricted by toxicity and drug resistance, but
PDNs regulate the balance between efficacy and toxicity through

targeted  therapy,  biodistribution,  and  lesion  accumulation  21.
This approach  represents  a  promising  strategy  for  cancer   treat-
ment. PDNs passively target and accumulate at tumor sites based
on the enhanced permeability and retention (EPR) effect. Surface
stabilizers  can  promote  active  tumor  accumulation  or  uptake  as
targeted  or  internalized  functionalized  ligands,  respectively  22.
Notably,  PDNs  modified  with  target  ligands  such  as  antibodies,
nucleic acid ligands, and ligand peptides are expected to increase
drug  accumulation  and  overcome  drug  resistance  23–25. The   ad-
ministration  of  PDNs is  no  longer  limited  to  intravenous  routes,
that can implement systemic or local treatment via the gut, eyes,
skin, and other routes. For instance, Wang et al. prepared oral 10-
hydroxycamptothecin (HCT)  nanocrystals  with  a  size  of  approx-
imately  190  nm  using  precipitation  26.  In  vitro  release  experi-
ments revealed that the drug release at 72 h was 2.5 times higher
than that  of  bulk  HCT.  Pharmacokinetic  data  in  rats   demon-
strated  that  the  oral  bioavailability  of  HCT nanocrystals  was  8.6
times  higher  than  that  of  active  pharmaceutical  ingredients
(APIs)  26.  These  results  indicate  that  nanocrystal  technology  can
significantly improve solubility and oral bioavailability while pre-
serving the lactone structure of camptothecin. In ocular drug de-
livery, nanocrystal  technology enhances drug solubility, creating
a  concentration  gradient  that  enables  the  drug  to  pass  through
the  physiological  barriers  of  the  eye  and  rapidly  release  19.
Paredes  et  al.  prepared  dapsone  nanocrystals  using  the  media
milling  technique  27.  Compared  to  raw  dapsone,  dapsone  nano-
crystals exhibited a 3.32-fold improvement in water solubility at
pH 4.5.  Nanocrystals  with  a  large  specific  surface  area  may   in-
crease the retention time in the mucosa and exhibit prolonged-re-
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lease behavior in the eye 28. For example, econazole nitrate nano-
crystal suspension was prepared by spray drying 29. The maxim-
um  concentration  of  econazole  nitrate  nanocrystal  in  tears  was
2.3 times higher than that of the bulk drug, as the chitosan in the
suspension increased the wettability of the nanocrystals. Further-
more, the viscosity and positive charge of chitosan increased the
retention time of the nanocrystals in the eye.

In  the  industrial  production  of  PDNs,  the  management  and
control of quality parameters, including size, distribution, shape,
and formulation information, are crucial.  A combination of   tech-
niques or innovative approaches is  commenly recommended for
laboratory production 30.  For instance, Koseki et al.  employed an
ultrasound-assisted  reprecipitation  method  to  prepare  rod-like
SN-38 nanocrystals 31. Furthermore, the preparation methods for
self-assembled  pure  nanomedicines,  such  as  the  template-as-
sisted method, dialysis  method,  film dispersion, and  in  vivo self-
assembly  method,  are  more  straightforward  32–35.  For  industrial
production,  conventional  and  mature  manufacturing  techniques
are  preferred  over  new  or  combined  technologies.  The  carrier-
free nature of PDNs allows for the use of traditional and straight-
forward  processes.  This  review  introduces  the  approved  PDN
products,  including  self-dispersible  nanocrystals  (SDNCs),  drug-
drug  cocrystals  (DDCs),  and  active-targeted  PDNs,  such as   anti-
body-drug conjugates  (ADCs)  and nanobodies.  They all  have  ap-
propriate  technologies  for  large-scale  industrial  production.  The
opportunities  and challenges  for  promoting PDN application are
then discussed. 

2. Definition and Characteristics of PDNs

PDNs integrating nanotechonlogy and biomedicine, are free-
carrier  nanostructures  composed  entirely  of  drug  molecules  36.
The nanoscale effect of PDNs also enhances the solubility of insol-
uble  drugs.  In  contrast  to  carrier-based  nanoparticles,  PDNs ex-
hibit  a  high  drug-loading  capacity  (up  to  100%)  and  efficiency
while avoiding the immunotoxicity associated with nanomaterial
carriers.  The  design  of  molecular  structural  units  fundamentally
regulates  the  structural  characteristics  and  physicochemical
properties  of  PDNs  37.  Furthermore,  the  drug  loading  sequence
can modulate the release rate and sequence of PDNs 38, 39, influen-
cing the drug therapeutic index. Molecular self-assembly and nan-
oprecipitation  are  common  techniques  employed  to  transform
dispersed  drug  molecules  into  nanosized  aggregates  40.  Various
factors  drive  the  formation  of  PDNs,  including  intermolecular
forces (such as hydrogen bonding, electrostatic interactions, and
π-π  stacking),  environmental  conditions  (e.g.,  pH,  temperature,
and  ionic  strength),  and  process  parameters  (grinding,  stirring,
and mixing) 41–43.

Although  polymer  micelles  or  liposomes  protect  drugs  from
the external  environment,  their  loading capactiy  is  typically  less
than 10%, often increasing pharmaceutical costs 44–48. In contrast
to  other  delivery  systems,  such  as  liposomes, micelles,  and exo-
somes,  PDNs typically  comprise  APIs  without  carriers.  Drug  ad-
sorbed on a carrier has the potential for desorption in non-target
sites, precluding  the  achievement  of  the  ideal  therapeutic  effect.
Under the protection of lattice energy, drug nanocrystals exhibit
high drug loading and low desorption rates 49. In vitro release ex-
periments  demonstrated  that  the  drug  loading  of  mitoxantrone
nanocrystals (approximately 100%) was approximately 12 times
that  of  mitoxantrone  liposomes  50,  51.  Simultaneously,  PDNs  can
achieve the clinical therapeutic effect with low doses and high ef-
ficacy. PDNs  can  reduce  the  administration  frequency  and   im-
prove patient compliance while also avoiding the risk of multiple
drug  resistance  and  toxic  side  effects  associated  with  multiple
high-dose medications. 

2.1. High drug solubility

Solubility  represents  a  critical  parameter  for  drug  delivery

systems (DDSs) 52.  Low solubility poses a significant challenge to
a drug’s bioavailability. Following oral administration, drugs with
limited saturation solubility  in  body fluids  often exhibit  reduced
oral  bioavailability  53,  54.  Similarly,  in  intravenous  delivery,  poor
solubility  frequently  necessitates  low  drug  doses  and  large
solvent  volumes,  thereby increasing the risks  of  toxicity  and ad-
verse  effects.  Consequently,  improving dissolution  and   bioavail-
ability is a crucial consideration when designing preparations for
insoluble  drugs  55.  Prodrugs,  for  instance,  demonstrate  promise
in elevating  solubility  by  bonding  hydrophilic  groups  to   hydro-
phobic  drugs,  thereby  enhancing  bioavailability�  56,  57.  However,
supplementary  studies  on  the  physical  and  chemical  properties,
as well as the in vivo behaviors of prodrugs, are inevitable 58. This
strategy is not dominant, considering the shortened time and cost
of  research  and  development  (R&D),  and  the  extended  duration
of patent protection. Nanosizing, the reduction of particle size to
the  nanometer  level,  significantly  increases  the  surface-to-
volume ratio  and  greatly  improves  the  bioavailability  of   insol-
uble  drugs.  It  is  an  effective,  economical,  and  universal  strategy
for  insoluble  drugs.  According  to  the  Noyes-Whitney  equation,
nanosizing accelerates the dissolution rate and increases satura-
tion solubility 59, 60. The Calvin equation demonstrates that dissol-
ution pressure increases as particle size decreases. Nanoparticles
obtain  significant  solution  pressure,  shifting the  equilibrium   to-
ward  dissolution  61.  For  instance,  a baicalein  nanocrystal   pre-
pared  using  the  high-pressure  homogenization  method  (HPH)
with poloxamer 188 as a stabilizer displayed a 2.01-fold increase
in  dissolution  profiles  compared  to  raw  baicalein  62. This   sug-
gests that  the  saturated  solubility  and  dissolution  rate  of   insol-
uble drugs  in  body  fluids  are  accelerated.  The  vast  specific   sur-
face area increases the residence time and adsorption of drugs in
the  intestinal  mucosa,  resulting in  improved  intestinal   absorp-
tion  63.  Furthermore,  increased  saturation  solubility  creates  a
more  significant  concentration  gradient  for  penetration  into  the
skin  membrane,  enhancing  passive  diffusion  64.  Additionally,
Shen et al. prepared quercetin (QC) hybrid nanocrystals with dia-
meters around 280 nm and 550 nm 65. Following intravenous ad-
ministration,  the fluorescence  intensity  of  280  nm hybrid  nano-
crystals  in blood was stronger than that of  550 nm nanocrystals
within  30  hours.  These  results  indicate  that  nanocrystals  with
smaller particle  sizes  may  dissolve  faster.  In  intravenous   injec-
tion, the risk of capillary blockage at the micron level is avoided.
The  unique  functional  groups  in  drugs  diversify  their  surface
properties,  facilitating  recognition  or  ingestion  by  tissues  in  the
body with continuous or rapid release. 

2.2. Hypotoxicity

Safety  and  toxicity  are  the  primary  concerns  and  the  most
crucial data  for  new  drug  registration.  Insoluble  drug   formula-
tions frequently contain numerous excipients, such as cosolvents
and solubilizers, which may precipitate in non-aqueous solutions
like  blood  66,  potentially  leading  to  safety  issues.  In  contrast,
PDNs exhibit high solubility without additional excipients, mitig-
ating these concerns.

The  advancement  of  nanomedicine  led  to  the  utilization  of
various  nanomaterials,  such as  polymer  nanoparticles  and   lipo-
somes, in DDSs 67, 68. However, in toxicity studies, researchers of-
ten focus on the toxicity of the entire preparation, neglecting the
effects of individual nanoparticles. It is important to note that the
toxicity  profiles  of  nanoparticles  and  nanomaterials  are  disti-
nct  69.  Consequently,  the  toxicity  of  nanoparticles,  particularly
slow-  or  non-degradable  particles,  warrants  significant  attent-
ion 70, 71.  For instance,  researchers reported that  acid-functional-
ized  single-walled  carbon  nanotubes,  when  phagocytosed  by
macrophages,  impaired  mitochondrial  function  and  inhibited
phagocytic  activity  72.  Furthermore,  the  toxicity  of  nanoparticles
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is  dependent  on  the  potential  exposure  routes  in  humans.  The
respiratory system  serves  as  the  primary  entry  point  for   air-
borne  particles.  Yang  et  al.  investigated  the  association  between
chronic obstructive  pulmonary  disease  and  polystyrene   nano-
plastics  73.  Their  findings revealed that  nanoplastics  in  the lungs
induced  oxidative  stress  and  inflammatory  responses,  and poly-
styrene nanoplastics traversed the alveolus-blood barrier, enter-
ing the bloodstream.

The toxicity of drugs is profoundly influenced by the admin-
istered dose and frequency 74. With nanotoxicology advancing, re-
searchers evaluated how nanomaterial properities impact their in
vivo  toxicology,  such  as  shape,  charge, pH,  and  size  75, 76. For   in-
stance, direct genotoxicity was detected in 20% of evaluated gen-
otoxicity tests for metal-containing nanoparticles and up to 70%
for nanofibers 77. In comparison, carbon-based nanoparticles gen-
erated higher  levels  of  reactive  oxygen  species  (ROS)  than   mi-
cron particles 78. This may be attributed to the larger specific sur-
face area of nanoparticles, which provides a greater reaction sur-
face.  Moreover,  when  ovarian  granulosa  cells  were  incubated
with 10 nm diameter gold nanoparticles (AuNP) for 24 h, the gold
nanoparticles significantly  infiltrated  or  damaged  the  mitochon-
dria  79. To ensure  nanoparticles  do  not  produce  unintended   ef-
fects,  in vivo toxicology should be investigated during the design
and modification process 80. 

2.3. Stability

The long-term stability of drugs is a key parameter for qual-
ity assurance  and  plays  a  crucial  role  in  the  manufacturing  pro-
cess. Ensuring the safety and efficacy of drugs during storage and
transportation  is  crucial.  However,  the  nanosize  effect  presents
challenges for the physical stability of nanoproducts. According to
the Ostwald ripening effect, in a highly dispersed system, the sat-
urated  solubility  of  small  particles  is  higher  than  that  of  large
particles  81,  82.  In  a  study,  Zhang  et  al.  explored  the  addition  of
small nanoparticles  to  regulate  the  growth  of  larger   nano-
particles,  achieving  product  size  and  shape  uniformity  83.
PDNs with extensive interfacial areas are thermodynamically un-
stable systems susceptible to aggregation and precipitation to re-
duce Gibbs free energy 84. When PDNs have poor physical stabil-
ity, the nanosize effect may no longer exist, resulting in sediment-
ation,  aggregation,  crystal  growth,  recrystallization,  and  even
toxic side  effects  after  medication.  The  Zeta  potential  (ζ)  can   in-
duce crystal aggregation or growth, affecting the absorption pro-
cess in vivo and leading to lower drug therapeutic effects. Physic-
al  stability  also  affects  the  system’s  fluidity  and  compressibility,
adversely impacting the R&D of PDN preparations.

PDNs are  primarily  stored  and  transported  in  aqueous   sus-
pension.  The  type,  volume,  and  temperature  of  the  solvent  and
excipient significantly influence the physical stability of the nano-
particles.  For  instance,  in  a  study  by  Nowak  et  al.,  silver  nano-
particles were coated with different stabilizers, including naprox-
en, diclofenac, and 5-chlorosalicylic acid 85. After 30 days, the sil-
ver nanoparticles  coated  with  naproxen  exhibited  a  more   pro-
nounced  increase  in  size  compared  to  the  other  stabilizers.  To
mitigate  the  Ostwald  ripening  effect,  the solvent  should  not  dis-
solve  the  drug  but  should  have  good  solubility  for  the  exci-
pient 64.

Chemical  and optical  stability  represent  critical  factors, par-
ticularly  for  drugs  sensitive  to  light,  heat,  and  humidity.  Some
drug  nanoparticles  are  dispersed  in  aqueous  media,  where  hy-
drolysis and oxidation can produce unpredictable effects. The sta-
bilizer molecules covering the nanoparticle surface protect the in-
ternal  compounds  from  oxygen  and  light  86.  For  instance,
omeprazole, a poorly soluble compound that degrades rapidly in
water-based  media,  was  formulated  as  a  nanosuspension  by
Möschwitzer  et  al.  87.  Its  content  remained  relatively  stable  for

one  month,  suggesting  that  the  surface  stabilizer  and  crystal
structure may have shielded omeprazole from decomposition. 

3. Commercialization and regulation of PDNs
 

3.1. Approved PDNs for the clinic

$
$
$

$
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Nanomedicines frequently  offer  significant  social  and   eco-
nomic  advantages.  Over  the  past  two  decades,  the  FDA  and
European Medicines  Agency  (EMA)  have  approved   approxim-
ately 80 drugs and medical device products related to nanomedi-
cine  for  commercialization  88.  As  the  market  expands  and
nanomedicine  rapidly  develops,  the  number  of  approved
nanomedicine products is expected to further increase. By 2025,
the protein-based nanomedicine market in cancer, inflammation,
and the central nervous system (CNS) is estimated to reach  28 ±
14 billion 89. The nucleic acid-based market will reach  14 ± 7 bil-
lion, and the small  molecule-based market will  reach  6 ± 3 bil-
lion  89.  Among  the  numerous  nanomedicine  products,  PDNs  are
easily  convertible.  Drug  nanocrystal  products  accounted  for
about 30% of all nanodrug products submitted to the FDA 90. Des-
pite  the  outbreak  of  the  coronavirus  disease  2019  (COVID-19)
crisis  and  subsequent  economic  recession  in  2020,  the  drug
nanocrystals  market  is  projected  to  reach  83.1  billion  91.
Moreover,  biotechnology  consistently  generates  profits,  and  the
global  nanomedicine  market  is  remarkably  vast.  These  factors
have propelled the pharmaceutical  industry towards the R&D of
biological  nanomedicine  products.  For  instance,  Ablynx  de-
veloped the first nanobody drug, Caplacizumab, which is used to
treat acquired thrombotic thrombocytopenic purpura 92. The first
marketing approval has the potential to significantly alter the bio-
medical  and  economic  landscape  of  nanobodies,  establishing  a
foundation for nanobodies to become mainstream biological PDN
products.  Currently,  14  ADCs  have  been  marketed  93,  and  more
than  100  ADC  candidates  are  currently  in  clinical  studies  93.  By
2026,  global  sales  of  marketed  ADCs  are  anticipated  to  surpass
16.4  billion  94,  with  Trastuzumab  deruxtecan  leading  the  way.
Its global sales are estimated to reach  6.2 billion in 2026, posi-
tioning it as the best-selling ADC 94. It is envisioned that PDNs will
yield substantial  market  benefits  and  continue  to  attract  the   in-
terest of academic personnel and investors. 

3.2. Technical barriers

Securing patent protection from the United States Patent and
Trademark Office  (PTO)  is  economically  critical  for  basic   re-
search  and  commercial  product  development  2.  During  the  "pat-
ent cliff" period, pharmaceutical companies face urgent pressure
to develop  and  launch  novel  products.  PDNs  have  garnered   in-
creasing  attention  from  the  pharmaceutical  industry.  Compared
to conventional drugs, the complex nature and specialized know-
ledge involved in PDNs provide a competitive edge in the market,
restricting generic  alternatives  and  mitigating  the  revenue   de-
cline associated with the "patent cliff" 89.

Approximately  30%  of  all  nanomedicine  patent  applications
are related to drug nanocrystals 90. These nanocrystals can be ad-
ministered through various routes, such as oral, intravenous, and
subcutaneous, and applied in different therapeutic areas,  includ-
ing anti-infection (26%), anticancer (24%), anti-anorexia (11%),
and  anti-inflammatory  (11%)  90. ADCs  present  significant   chal-
lenges  and  stringent  requirements  in  terms  of  technology  and
production  for  intellectual  property  protection.  However,  they
also offer  greater  opportunities  for  extending patent  life  and re-
ducing  the  likelihood  of  patent  breakthroughs.  ADCs  integrate
multiple  components,  such  as  the  target,  antibody,  linker,  and
toxin.  Antibody  patents  and  regulations  do  not  fully  apply  to
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ADCs, making the identification of novel antibodies, targets, junc-
tions,  and  toxins  challenging.  For  instance,  researchers  filed  a
patent  related  to  the  linker  in  Trastuzumab  deruxtecan  95,  de-
scribing multiple peptide linkers that include the glycine-glycine-
phenylalanine-glycine  sequence  95. Any  new component  or   com-
bination  of  components  (antibody-toxin,  antibody-linker,  and
linker-toxin)  can  receive  specific  patent  protection  and  extend
the  market  exclusivity  period  of  the  corresponding  ADCs.  In
2012,  AstraZeneca  acquired  the  VA-PABC  linker  developed  by
Spirogen  95  and  promptly  filed  a  patent  describing  an  ADC  that
enhances the ability of tesirine to bind to anti-CD19 antibodies. 

3.3. Regulatory of PDNs

The  rapid  advancement  of  nanomedicines,  the urgent   de-
mand  for  related  products,  and  the  need  for  industry  progress
have presented numerous challenges to regulatory agencies. The
FDA  is  required  to  clarify  the  PDNs  within  its  jurisdiction,  pro-
pose  scientifically  sound  regulatory  policies,  evaluate  appropri-
ate  products  rationally,  and  provide  technical  guidance  96.  In
2012, the draft industry guidance "Considering Whether an FDA-
Regulated  Product  Involves  an  Application  of  Nanotechnology"
indicated that  the  FDA  had  not  yet  clearly  defined   nanotechno-
logy.  The 2014 industry guidance stated:  "whether a material  or
end product  is  designed to  possess  an  external  dimension or  an
internal or surface structure in at least one nanoscale range (ap-
proximately 1 to 100 nm), or exhibits properties or phenomena,
including physical, chemical, or biological effects,  that can be at-
tributed to its size that is even up to 1 μm (1000 nm)" 90, 97, 98. This
signified that  the  FDA  regulated  nanotechnology  products   ac-
cording  to  specific  legal  standards  and  powers.  Furthermore,  in
2012, the FDA issued two additional draft industry guidelines ad-
dressing  nanotechnology  issues  in  cosmetics  and  food  99.  The
European  Cosmetic  Regulation  covered  insoluble,  persistent,  or
synthetic nanomaterials in the 1–100 nm size range in cosmetics,
including nanocrystals, liposomes, and nanoemulsions 100–102.

The  physicochemical  and  biological  properties  of  novel  and
complex materials are vital for ensuring the reproducibility of the
production process and the anticipated biological effect 103. Their
supervision  is  essential  and  indispensable.  Currently,  a  clear
definition  of  nanomaterials  is  lacking.  Regulatory  agencies  have
limited  experience  with  emerging  nanomaterials,  and  reliable
data sets for developing regulatory strategies are absent. Further-
more, standard nanomaterials for reference and specific tools for
adequately  characterizing  fundamental  product  properties  are
unavailable. Experiments  conducted without  adhering to  regula-
tions and guidelines have raised serious concerns about nanoma-
terials.  Regulators,  the  pharmaceutical  industry,  governments,
and academia are collaborating to develop specific, scientific, and
comprehensive  research  reports,  risk  assessments,  and  guid-
elines for nanomaterials 104.

Current regulatory guidelines are more favorable for the de-
velopment  of  PDN  products.  PDNs  offer  an  optimal  alternative
approach,  reducing the barriers  to commercial  translation while
largely  circumventing  the  need  for  nanocarrier  application  and
oversight.  The  US  FDA  has  granted  approval  to  numerous  PDN
products, encompassing DDCs, ADCs, and nanobodies.

The supervision of complex nanomedicine products involves
their key characteristics, and products are sampler, so the evalu-
ation  becomes  easier  105.  The  regulatory  process  for  marketed
PDN  products  is  well-established,  with  numerous  available
guidelines,  International  Organization  for  Standardization  (ISO)
standards,  and  approved  methods  and  references.  Particle  size
and  distribution,  for  instance,  are  critical  factors  for  PDN
products. These parameters can be characterized dynamically or
statically through various imaging or light scattering techniques,
such as dynamic light scattering, laser diffraction, and image ana-
lysis  106–108.  The  polycrystalline  form is  another  crucial  aspect  of
drug  nanocrystals,  as  it  influences  dissolution,  stability,  and
bioavailability.  This  property  can  be  determined  using  X-ray

powder  diffraction  (XRPD),  differential  scanning  calorimetry
(DSC), or spectroscopic methods 106, 108–110. Product safety is inex-
tricably linked  to  the  guidance  provided  by  regulators  and   in-
dustry  guidelines, which  contribute  to  the  improvement  of  PDN
products by enhancing benefits and mitigating risks 19.

Presently and in the future,  regulatory bodies and the phar-
maceutical industry are collaborating to establish a comprehens-
ive  regulatory  framework  through  the  International  Council  for
Harmonisation  of  Technical  Requirements  for  Pharmaceuticals
for  Human  Use  (ICH).  In  2010,  the  EMA  conducted  a  scientific
workshop  on  nanomedicines  111. Participants  discussed  the   ad-
vantages and challenges of nanotechnology in medicine and spe-
cific  issues,  including  the  characteristics,  biological  distribution,
and interactions of nanomedicines with biological systems 111, fa-
cilitating  the  evaluation  of  future  nanomedicines.  Concurrently,
major  pharmaceutical  companies  have  increased  investment  in
preclinical and clinical research on PDNs, providing reliable data
and reference materials to inform the development of regulatory
policies.

Comprehensive pharmacoeconomic studies are essential pri-
or  to  the  commercialization  of  PDNs.  The  development  of  a
Health Technology Assessment (HTA) will  support  the  introduc-
tion of PDNs and enhance their clinical application. Furthermore,
it  provides  regulatory  agencies  and  public  health  stakeholders
with  crucial  information regarding the  safety, efficacy, and cost-
effectiveness  of  PDNs  97,  112.  To  successfully  integrate  PDNs  into
the public  health  system,  interdisciplinary training for  research-
ers, healthcare professionals, and public health experts is neces-
sary 113. 

4. PDN Types
 

4.1. SDNCs

SDNCs, primarily consisting of drugs and stabilizers, have re-
cently  demonstrated  significant  potential  for  disease  treatment
applications.  Since  their  invention  in  the  1970s,  nanocrystals
have represented over 20% of nanomaterial-based new drug ap-
plications received by the FDA 114. The formation of SDNCs begins
with  the  regular  arrangement  of  drug  molecules  into  a  crystal
with  a  specific  structure,  followed by  the  adsorption  of   stabil-
izers (amphiphilic  compounds)  onto  the  crystal  surface  to   pre-
vent  aggregation.  These  carrier-free  SDNCs  can  achieve  nearly
100%  drug  loading,  resulting  in  enhanced  therapeutic  effects  at
lower  drug  doses.  The  FDA  approved  Ryanodex®  for the   treat-
ment of malignant hyperthermia 118. A single bottle of Ryanodex®

can  be  dissolved  in  5  mL  of  sterile  water  within  20  sec  and
achieve standard therapeutic effects 119, 120. In contrast, a bottle of
traditional Dantrium preparation requires 60 mL of sterile water
and  takes  8  min  to  dissolve,  with  approximately  8−9  bottles
needed to achieve the same therapeutic effect 119, 120.

SDNCs can be prepared using by a variety of methods, includ-
ing  bottom-up,  top-down,  and  combination  approaches  121−127.
Currently,  the  majority  of  commercially  available  nanocrystal
suspensions  are  produced  through  a  top-down  approach.  Wet
media milling and HPH are the most common technologies in the
pharmaceutical  industry.  Additionally,  combination  technologies
such  as  Nanoedge,  Nanopure  XP,  CAV-Precipitation,  and  Smart-
Crystal have been developed to meet specific production require-
ments 128. Manufacturers must determine appropriate fabrication
techniques  and  adjust  process  parameters  to  produce  uniform
and  high-quality  nanocrystals  on  an  industrial  scale.  Fig.  1  and
Supporting  Information  Table  S1  illustrate  the  methods  used  to
fabricate drug nanocrystals. 

4.1.1. SDNC fabrication
The  preparation  and  stability  of  highly  stable  crystals  are
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closely  related to the physicochemical  properties of  drugs 129, 130.
Drugs with high hydrophobicity and enthalpy values (or cohesive
energy) have a greater propensity to form stable nanocrystals 131.
Specifically, drugs with high cohesive energy (δE > 30 kj·g−1) are
more likely to produce stable nanocrystals, while those with low
cohesive  energy  (δE  <  25  kj·g−1)  tend  to  agglomerate  and  grow
within nanosuspensions. Furthermore, the addition of solvent or
additive molecules can increase viscosity and suppress diffusion,
thereby altering  supersaturation  levels  and  inducing   crystalliza-
tion. Previous research from the Weizmann Institute has demon-
strated that adding chiral serine to a solution caused glycine crys-
tals  to  grow  in  a  pyramid  shape  rather  than  the  typical  bipyr-
amid 132, 133.

The stabilizer plays a pivotal role in maintaining the stability
of SDNCs, with the appropriate type and concentration being key
factors. Stabilizers can be categorized into four groups: ionic sur-
factants,  non-ionic  surfactants,  polymers,  and  other  stabili-
zers 134–141. The suitable stabilizer and its concentration are essen-
tial to counterbalance the detrimental effect of viscosity. Bernard
et  al.  classified  hypromellose  (HPMC), methylcellulose  (MC), hy-
droxyethyl  cellulose  (HEC),  hydroxypropyl  cellulose  (HPC),  and
carboxymethylcellulose  sodium  (CMC-Na)  as  high-viscosity  sta-
bilizers, while  PVP30,  PVP90,  and  TPGS  were  identified  as  low-
viscosity stabilizers 145, 146. Moreover, the zeta potential (ζ) is a de-
terminant of  the physical  stability  of  the nanocrystal  suspension
system  86.  Findings  demonstrated  that  increasing  the  molecular
weight  and  concentration  of  Poloxamer  reduced  its  ζ  potential
(Poloxamer ζ (F127) > ζ (F68)). Notably, a significant decrease in
ζ potential  was  observed  with  increasing  Poloxamer  F127   con-
centration 147.  Furthermore,  the behavior of  nanoparticles  in   liv-
ing organisms can be modified by the coated polymers, which of-
fer  stabilization,  release  control,  and  other  functionalities  143, 144.
Sharma  et  al.  discovered  that  combining  Poloxamer  F68  with  a
small  quantity  of  chitosan  derivatives  enhances  the  stability  of
paclitaxel (PTX) nanocrystals 142. The accumulation of PTX nano-
crystals  in  Caco-2  cells  was  higher  compared  to  PTX  alone,  as
chitosan  inhibited  P-glycoprotein  (P-gp)  and  reversibly  opened
tight cell junctions 102. 

4.1.2. In vivo fate of SDNCs
Comprehending the fate of SDNCs) within living organisms is

crucial for their R&D, significantly accelerating the advancement
process. The primary method for obtaining pharmacokinetic and
biodistribution  data  of  SDNCs  involves  monitoring  the  in  vivo
concentration  of  free  drugs.  However,  this  approach  overlooks
the  in  vivo  behavior  of  intact  SDNCs.  The  release  behavior  of
SDNCs in physiological in vivo environments differs from in vitro
conditions.  The  lack  of  agitation  and  fluid  in  vivo  likely  leads  to
slow and persistent release, allowing intact nanocrystals to inter-
act with biological tissues 19. Researchers have proposed that the
in vivo behavior of certain SDNCs may resemble that of nanocarri-
er particles 148, 149.

The behavior of SDNCs in living organisms may vary depend-
ing  on  the  route  of  administration  150.  Studies  have  shown  that
SDNCs dissolve rapidly in gastrointestinal fluid after oral admin-
istration, creating a high concentration gradient.  The area under
the curve (AUC) of nimodipine nanocrystals at 12 h post-oral ad-
ministration was 2.5 times higher than that of their solid disper-
sions 151.  Recent  findings suggested that  intact  nanocrystals  may
adhere to  the  gastrointestinal  mucosa  and  subsequently  be   ab-
sorbed  through  epithelial  transcellular  pathways,  leading  to  an
improved oral AUC 152.  In contrast, SDNCs do not dissolve imme-
diately  following intravenous injection.  Smaller  nanocrystals  are
subject to rapid dissolution due to fluid shear force, while larger
nanocrystals may be engulfed by macrophages, resulting in swift
distribution to the liver and spleen 153, 154. Furthermore, nanocrys-
tals  with specific  shapes have demonstrated enhanced efficiency
or improved biosafety in drug delivery applications 155, 156. Zhou et
al.  developed rod-shaped and spherical  pegylated hydroxycamp-
tothecin  nanocrystals  (HCPT-NRs)  with  an  average  diameter  of
200 nm 157.  In cellular uptake studies using 4T1 and MCF-7 cells,
rod-shaped  hydroxycamptocampine  nanocrystals  (HCPT-NRs)
exhibited  higher  uptake  efficiency  compared  to  spherical  HCPT-
NRs,  indicating superior anticancer potential.  Similarly, Weiss et
al.  prepared  both  non-functional  and  functionalized  cellulose
nanocrystals  (CNCs) 158.  In  vivo biocompatibility experiments  re-
vealed  that  charged  CNCs  are  non-immunogenic,  while  un-
charged CNCs  elicited  undesirable  inflammation  at  high   concen-
trations,  leading  to  tissue  damage  and  disease  responses.
Moreover,  the  dissolution  rate,  penetration,  and uptake   effi-
ciency of  SDNCs are  significantly  influenced by their  size.  Small-
sized curcumin  nanocrystals  (approximately  240  nm)   demon-
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Fig. 1   Methods used for fabricating SDNCs. (A) The anti-solvent precipitation method mixes the drug solution with the antisolvent, blocks crystal growth, and reduces the
size of drug particles. Ultrasonic sound is used to induce crystallization. (B) Wet ball milling prepared drug nanocrystals by the interaction between milling beads and drug
particles. (C) The spray drying method converts a fluid drug into small droplets through an atomizer, then transforms them into drug particles. (D) Microfluidic technology
manipulates different microchannels and fluid flow speeds to create uniformly size-controlled drug particles.
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strated  a  faster  dissolution  rate  and  higher  diffusion  percentage
in simulated pulmonary mucus compared to large-sized curcumin
nanocrystals  (approximately  500  nm)  115.  Additionally,  the  per-
meability  of  fenabemide  nanocrystals  from  donor  to  acceptor
cavities decreased with increasing particle size 116.  The transport
pathways  of  nanocrystals  were  different  based  on  their  size,  as
observed in the larval  zebrafish model 117. Nanocrystals  measur-
ing  70  nm are  internalized  into  lysosomes  and  the  endoplasmic
reticulum, while 200  nm nanocrystals  accumulate  more  in   lyso-
somes.  The  proteins  adsorbed  onto  nanocrystals  with  different
stabilizers can change delivery routes, and interactions between
nanocrystals  and  cell  layers.  For  instance, Qin  et  al.  successfully
employed polyvinylpyrrolidone (PVP) K17, D-α-tocopheryl poly-
ethylene glycol 1000 succinate (TPGS), and poloxamer F68 as sta-
bilizers to develop celecoxib nanocrystals (CXB-NCs) 159. The peak
concentration of CXB-NCs/TPGS and CXB-NCs/F68 was 5 and 3.5
times  higher  than  that  of  CXB-NCs/PVP  K17,  respectively.  The
pharmacokinetic  curve  of  CXB-NCs/PVP  K17  was  significantly
flatter,  indicating  slower  drug  release.  Tight  junctions  (TJs)
between cells pose a challenge in delivering drugs to the system-
ic circulation and specific organs.  Certain stabilizers can interact
with TJ proteins and regulatory molecules, substantially improv-
ing the delivery efficiency of SDNCs 160, 161. 

4.1.3. Application of SDNCs
Nanocrystals represent a feasible and practical approach for

delivering  APIs  through  various  administration  routes.  Over  20
nanocrystal-based products  have  been  approved  and   commer-
cialized, with numerous new products in various stages of clinic-
al  research  9.  Oral  administration  is  the  most  appropriate  and
preferred  route,  as well  as  the  first  choice  for  product   commer-
cialization  162.  When  exposed  to  gastric  and  intestinal  fluids,
nanocrystals  rapidly  dissolve  and  absorb,  improving  the  total
AUC and reducing the impact of eating or fasting on drug absorp-
tion  163.  In  vitro  release  tests  have  demonstrated  that  ibuprofen
nanocrystals  released  90%  of  the  total  drug  within  1  h,  while
pure  drugs  and  commercially  available  products  released  only
58%  and  63%,  respectively  106.  Extracenteral  administration,  in-
cluding  intravenous,  intramuscular,  and  transdermal  routes,  is
another practical approach that offers higher patient compliance,
avoids first-pass effects, and allows for rapid treatment termina-
tion.  Transdermal drug delivery is  a  typical  example 64, 148, 164, 165,
where drug  nanocrystals  produce  a  high  drug  load  in  skin   fur-
rows  and hair  follicles, promoting  drug  penetration  through the
skin  barrier  and maintaining  continuous drug release  166, 167.  For
instance,  studies have  shown  that  nanosuspensions  of   Aprem-
inast,  used  for  psoriasis  treatment,  exhibited  2.6-  and  3.2-fold
higher penetration rates  in  the stratum corneum and viable   lay-
ers compared to micropowder suspensions 168. Ex-vitro skin pen-
etration studies  demonstrated  that  the  dermal  deposition  of   fu-
maric  acid  (FA)  from  FA  nanocrystals  was  2-fold  compared  to
raw  FA.  In  vivo  results  exhibited  that  the  in  vivo  distribution  of
nanocrystals  was  improved,  enhancing therapeutic  effects   com-
pared to the commercially available Fucidin cream 169. Consider-
ing  the  high  sensitivity  of  eye  tissue,  organic  solvents,  extreme
pH, and complex materials should be avoided. SDNCs can reduce
irritation  to  the  eye,  improve  solubility,  and  prolong  retention
time 170. For example, the ophthalmic anti-inflammatory drug flu-
metholone has been formulated into eye drops, and after admin-
istration of nanocrystalline eye drops, the average concentration
of flumetholone in the aqueous humor was 2−3 times higher than
that of microcrystal eye drops within 60 min 171.

SDNCs are also employed as a carrier for the delivery of bio-
pharmaceuticals,  such  as  proteins  and  nucleic  acids,  enabling
combinatorial therapy.  SDNCs  consistently  exhibit  specific  mor-
phologies,  including  rod-like  and disk-like  shapes  135, 136, 172. Not-
ably, rod-like nanoparticles demonstrate the ability to target the

pulmonary  circulation  following  intravenous  administration149.
The research group utilized rod-shaped PTX nanocrystals as car-
riers to develop a pulmonary artery-targeted co-delivery system
of PTX and caspase-3 (Cas-3) for the alleviation of monocrotaline-
induced  pulmonary  hypertension  136.  The  system was  fabricated
by loading the protein onto PTX-nanocrystals, followed by a coat-
ing of glucuronic acid (GlcA) for targeting the glucose transporter-
1 (GLUT-1) on pulmonary artery smooth muscle cells (PASMCs).
The findings  revealed that  nanoparticles  with  a  diameter  of  170
nm exhibited prolonged circulation in the blood, accumulation in
the lungs, targeted pulmonary arteries (PAs), induced regression
of PA remodeling, and improved hemodynamics, resulting in de-
creased pulmonary arterial pressure and Fulton’s index (Fig. 2). 

4.2. DDCs

DDCs are  composed of  two or  more  distinct  drug  molecules
within  a  single  crystalline  lattice,  maintained in  specific   stoi-
chiometric  ratios  through  non-covalent  interactions  173. This   ap-
proach offers a cost-effective strategy by reducing production ex-
penses and  facilitating  the  development  of  novel  drug   combina-
tions. Notably, DDCs enable the systematic enhancement of drug
properties without altering their core chemical structures, which
has garnered considerable attention in the field of pharmaceutic-
al eutectics.

In  recent  decades,  the  FDA  has  approved  and  successfully
commercialized  various  DDC  products.  Furthermore,  preclinical
and clinical research on DDCs has received increased incentives,
leading to a substantial rise in capital investment from research-
ers and companies (Supporting Information Table S3) 175-186. Ad-
ditionally,  the  rising  number  of  DDC  patents  granted  by  the
European and US patent offices reflects a growing interest in ad-
vancing technologies for more complex and efficient DDC formu-
lations 174. 

4.2.1. Distinctiveness of DDCs
DDCs  are  a  distinctive  solid-state  form  derived  from  the

modification of  the  physicochemical  properties  of  drug   mo-
lecules.  This  is  achieved  by  altering  the  molecular  arrangement
and  intermolecular  interactions  within  a  shared  crystal  lattice.
This novel  approach  offers  the  potential  to  enhance  the  proper-
ties  of  one  or  both  drugs  without  requiring  changes  to  their
chemical structures. 

4.2.1.1　Changing the melting point, hygroscopicity, solubility, and
mechanical strength of drug molecules

DDCs can significantly impact key properties such as melting
point,  hygroscopicity,  solubility,  and mechanical  strength.   Stud-
ies  demonstrated  that  the  melting  point  of  a  DDC generally  was
between  those  of  the  individual  components  187–190.  In  cases
where  one  drug  has  a  particularly  high  melting  point,  the  DDC
typically  exhibits  a  higher  melting  point  overall.  Additionally,
shifts  in  the  molecular  packing  within  the  lattice  can  alter  the
mechanical  properties  of  the  DDC,  affecting  parameters  such  as
tensile  strength,  breaking  force,  elasticity,  and  compressibi-
lity 191, 192. The solubility of a DDC is closely related to the solubil-
ity of the coformer, with the coformer’s characteristics playing a
crucial  role  in  the  dissolution  behavior  of  the  entire  system  193.
For  instance,  the  DDC  formed  by  dihydromyricetin  (DMY)  and
PTX reduced the solubility difference between the slightly water-
soluble DMY and the highly water-soluble PTX 194. This resulted in
a significant reduction in the equilibrium solubility of PTX and a
slight  increase  in  that  of  DMY.  The  findings  indicated  that  DMY
and PTX were released synchronously and continuously from the
cocrystal,  enabling  the  simultaneous  release  of  two  drugs  with
significantly different  solubilities  and  synergistic  therapeutic   ef-
fects  194.  Temozolomide,  a  well-dissolved  anticancer  drug  with
rapid clearance from the body, was cocrystallized with hesperid-
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in, a less soluble natural anti-tumor component. The temozolom-
ide-hesperidin  cocrystal  reduced  the  solubility  of  temozolomide
from  7600  (pH  1.2)  and  6424  (pH  6.8)  to  483.9  (pH  1.2)  and
193.5  μg·mL−1  (pH  6.8)  195. Hesperidin  effectively  slows  the   re-
lease  and  absorption  of  temozolomide,  extending  its  retention
time in the body. The lyotropic behavior of DDCs offers economic
benefits to  both  producers  and  consumers  by  reducing  the   re-
quired dose and production and marketing costs, and improving
patient compliance. 

4.2.1.2　 Improving  drug  stability:  Physical, chemical, and  optical
stability

DDCs  are  a  multi-component  system  in  which  the  active
groups  of  drug  molecules  in  the  lattice  interact  non-covalently.
This structural  arrangement  protects  the  drugs  from   environ-
mental factors such as water, oxygen, and light.  For instance,  le-
vofloxacin  (LVFX)  is  a  spectral  antimicrobial  agent  commonly
used in antibacterial treatment. Under light exposure, LVFX’s hy-
drogen  bond  receptor  (-C=O)  is  susceptible  to  degradation.  The
experiment  found  that  the  LVFX-metacetamol  cocrystal  (LVFX-
AMAP)  formed  hydrogen  bonding  (-N-H...O),  which  enhances  its
photostability 196. Additionally, isoniazid is prone to oxidative de-
gradation. Gallic acid (GA) is commonly used as a natural antiox-
idant.  The  DPPH  method  demonstrated  that  the  isoniazid-GA
cocrystal exhibited scavenging activity against DPPH radicals 197. 

4.2.1.3　Enhancing bioavailability and displaying synergistic effect
DDCs are  employed  for  synergistic  therapy  and  can   poten-

tially  reduce  production  and  application  costs  198.  For  instance,
with the widespread and persistent use of antibiotics, antimicro-
bial  resistance  has  become  a  significant  global  concern.  Shem-
chuk  et  al.  utilized  a  ciprofloxacin  (synthetic  antibiotic)-thymol
(natural antibiotic) cocrystal for infection treatment 199. While Es-
cherichia  coli  is  sensitive  to  ciprofloxacin alone,  thymol  alone or
in  a  physical  mixture  with  ciprofloxacin  did  not  inhibit  the
growth  of  Escherichia  coli.  However,  the  ciprofloxacin-thymol
cocrystal  exhibited  considerable  antibacterial  activity,  signific-
antly  surpassing  that  of  ciprofloxacin  alone  199.  Interestingly,
DDCs  serve  as  a  potential  and  promising  bridge,  ideally  linking
drugs  with  nutraceuticals  to  develop  novel,  safe,  and  effective
cocrystal  products  200.  For  nutraceuticals,  soluble  drugs  in  DDCs
can promote the absorption of  these insoluble nutraceuticals 200.
Similarly,  nutritional health  products  may  provide  adequate  pa-
tient  nutrition  and  assist  DDCs  in  achieving  a  more  significant
curative effect while potentially reducing side effects. 

4.2.2. Fabrication of DDCs
Selecting appropriate conformers is crucial for constructing a

stable cocrystal structure and a rational drug combination. In vir-
tual  screening, researchers typically commence by analyzing the
molecular  structure  of  drug  compounds.  Subsequently,  in  con-
junction  with  computer-aided  virtual  screening,  researchers
identify common hydrogen bond motifs through the examination
of X-ray crystal structure data in the Cambridge Structural Data-
base  201.  The  relevant  drug  supramolecular  synthons  are  then
screened via high-throughput  co-crystallization or  supramolecu-
lar crystal engineering. Furthermore, the intermolecular interac-
tions and stacking arrangements between drug molecules are as-
certained  202.  Based  on  these  intermolecular  interactions,  drug
molecules can be linked and recombined in a  reversible  and dy-
namic manner.

The supramolecular  interaction  module  enables  the   pro-
grammatic  combination  of  multiple  drugs  into  a  single  delivery
system,  circumventing  the  need  for  time-consuming and   com-
plex synthesis  processes.  This  supramolecular  synthonic   ap-
proach identifies common and reproducible intermolecular inter-
actions,  such  as  van  der  Waals  forces,  halide  bonds,  and  π-π
stacking. Hydrogen bond interactions, in particular, exhibit favor-
able strength and spatial flexibility 203–205. The most frequently ob-
served  hydrogen  bond  receptors  include  carbonyl  oxygen  and
aromatic nitrogen, while hydrogen bond donors can be ranked by
their  activity:  -COOH  >  -NH-  >  R-OH  174.  The  -COOH  group  has
emerged as the most prevalent hydrogen bond and is commonly
observed  in  DDCs.  Drug  molecules  typically  contain  functional
groups (e.g., acid, acid pyridine, acid amide, amide, and pyridine)
that  function  as  proton  acceptors  or  donors.  These  groups  form
supramolecular  synthons,  such  as  carboxylic  acid  dimers,  acid-
pyridine, phenol-pyridine,  and  phenol-carboxylic  acid, which  fa-
cilitate the formation of DDCs.

Researchers  employed  various  computational  methods  to
screen potential supramolecular synthons and predict the forma-
tion of DDCs. These include crystal structure prediction (CSP) 206,
molecular  electrostatic  potential  surface  energy  (MEPSE)  207,  208,
electrostatic mode evaluation 173, 209, solution-based δpKa 204, and
Hansen solubility  parameter  (HSP) calculation  210, 211.  CSP serves
as a valuable in silico tool for predicting all possible crystal forms
of  APIs,  and  it  is  the  sole  virtual  screening  method  that  directly
considers  the  impact  of  crystallinity  on  DDC  formation.  The  co-
crystallization reaction energy (ΔEcc), calculated through the sub-
limation  thermodynamic  cycle,  represents  the  difference
between the cocrystal  lattice energy (Elatt) and its pure compon-
ents  201,  212,  213.  ΔEcc  indicates the  contribution  of  the   thermody-
namic  co-crystallization  enthalpy  and  enables  the  measurement
of the co-crystallization tendency 201, 212, 214. For instance, Sun et al.
utilized  CSP  to  predict  the  indometacin-paracetamol  cocrystal
and investigated the effect of crystallinity on its formation 201.

The MEPSE value represents  the strength of  hydrogen bond
donors or acceptors in various functional  groups to a  significant
degree  215.  This  value  is  employed  to  predict  the  likelihood  of
forming DDCs. A higher negative MEPS value indicates a stronger
hydrogen bond receptor, while a higher positive value signifies a
more potent hydrogen bond donor 216. Musumeci et al. combined
19  compounds  with  bicalutamide  in  a  1∶1  molar  ratio  to  create
cocrystals 209. The pairing energy (δE) at interaction sites was cal-
culated  and ranked based  on  MEPS values.  The  compounds  that
form stable  cocrystals  are  positioned  near  the  top  of  the  list  209.
The researchers discovered that the possibility of cocrystal form-
ation was predictied through the change in pairing energy (ΔδE)
from the MEPS in pure solid phases.

Salt  and  cocrystals  are  multi-component crystalline  materi-
als. The distinction between them lies in the transfer of a proton
between an acid and a base.  In salts,  the proton transfer is com-
plete, whereas in  DDCs, no proton transfer  occurs  217. The phar-
maceutical  industry generally accepts the pKa rule, which states
that salt formation is expected when the pKa difference between
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Fig.  2    Self-assembly PTX nanocrystals  loading with Cas-3 targeting PASMCs re-
store  the  FoxO1 expression  and  promote  cell  apoptosis,  alleviating PA  remodel-
ing and improving cardiopulmonary functions (Ref. 136, Copyright by Elsevier B.V
2024).
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acid  and  base  exceeds  2  or  3  (ΔpKa  =  pKa[protonated  base]  −
pKa[acid]  >  2  or  3)  217, 218.  At  low ΔpKa values  (ΔpKa <  0), acids
and  bases  almost  exclusively  form  cocrystals.  However,  when
ΔpKa falls between 0 and 3, this parameter is insufficient for ac-
curately predicting solid salts 219, 220. Jie et al.  found that pKa cal-
culation  offers  a  practical  approach  to  designing  stable  DDCs.
They  synthesized  four  -NH-rich  isomers —H2BT  (1H,1'H-5,5'-
bitetrazole),  DATr  (4,5-diamino-4H-1,2,4-triazole),  1MAT  (1-
methyl-5-aminotetrazole),  and  2MAT  (2-methyl-5-aminotet-
razole)—into two salts  and one cocrystal 221.  TDATr’s  pKa value
lies between the pKa values of H2BT, enabling them to form a 1∶1
molar  ratio  salt.  The  pKa  values  of  1MAT  and  2MAT  are  lower
than  those  of  H2BT,  indicating  reaction  trends  and  cocrystal
formation. 2MAT’s pKa value is notably lower than 1MAT’s, sug-
gesting  that  2MAT is  more  suitable  for  cocrystal  formation  with
H2BT.  Experimental  results  from  PXRD,  DSC,  and Hirshfeld   sur-
face  analysis  confirmed  the  construction  of  the  2MAT-H2BT
cocrystal 221.

At  the  molecular  level,  cocrystal  systems  exhibit  miscibility.
The probability of cocrystal formation can be predicted based on
the  solid-state  miscibility  of  drug  molecules  210.  HSPs  provide  a
valuable  tool  for  estimating  the  miscibility  of  drugs  with  other
drugs,  excipients,  and  carriers.  HSPs  can  divide  the  resultant
force  of  various  interactions  into  partial  solubility  parameters,
which represent  the  likelihood  of  interactions  between   mo-
lecules 222. A trend exists between drugs and supramolecular syn-
thons. When the total solubility parameter difference (Δδt) is less
than  0.7  MPa0.5,  it  indicates  that  the  materials  are  miscible  and
may form DDCs, while a Δδt greater than 0.7 MPa0.5 suggests im-
miscibility 223. 

4.2.3. Opportunities and challenges for DDCs
Over  the  past  decade,  a  significant  number  of  DDCs  have

transitioned from  laboratory  development  to  commercial   avail-
ability  as  a  non-toxic  and controlled-release DDS.  Notably, DDCs
have found applications in the treatment of various diseases, such
as viral infections, inflammatory conditions, and cancer. Interest-
ingly, one-third of DDCs are classified as either non-steroidal anti-
inflammatory drugs or anti-tuberculosis agents.

The  innovation  and  development  of  DDCs  are  significantly
encouraged  by  rational  and  up-to-date drug  regulatory   frame-
works during the R&D phase. In April 2011, the FDA first issued
guidelines  for  DDCs,  defining  them  as  "a  crystalline  substance
consisting  of  two or  more  molecules  in  the  same lattice"  202  and
classifying  DDCs  as  a  drug  intermediate,  thereby  affecting  their
development 202. However, in 2018, the FDA revised the classific-
ation of DDCs from drug intermediates to APIs 224.  The guideline
emphasized that the drug structure in DDCs is not altered but ex-
ists as a new solid form of the drugs. Improvements in patent ap-
plications  and  regulatory  systems  reduced  the  financial  burden
on  pharmaceutical  enterprises  in  R&D,  offering  developers  new
intellectual property opportunities.

The  industrial-scale production  methods  of  DDCs   signific-
antly impact their successful commercialization. Crystallization is
the most critical process, determining physical properties such as
crystal  shape,  size,  distribution,  structure,  and  crystallinity.
These factors also affect subsequent production stages, including
filtration,  drying,  and  milling  173.  Controlling  crystal  nuclei  and
polycrystalline  transformation  are  crucial  steps  in  achieving  the
desired  final  product.  Industrial-scale crystallization  is   per-
formed using two methods: batch operation and continuous crys-
tallization.  Traditionally,  the  pharmaceutical  industry  relie  on
batch  crystallization  processes,  which  continue  to  be  practi-
ced  225.  Well-established  batch  crystallization  methods  include
solvent  evaporation  226,  grinding  227,  cooling  crystallization  228,
and antisolvent crystallization 229.  However,  these methods have
drawbacks,  such  as  batch-to-batch  variabilities  in  particle  size
distribution and morphology, complex scale-up production, ener-

getic inefficiency, and the need for manual intervention 230, 231.  In
contrast, continuous crystallization enables higher yield and uni-
form  purity  232.  The  continuous  process  unit  offers  flexibility  in
controlling  internal  temperature,  supersaturation,  nucleation,
crystal  growth,  and  other  parameters  233.  For  example,  hot  melt
extrusion,  a  continuous  process,  facilitates  cocrystal  formation
without  solvents.  Karimi  et  al.  employed  hot  melt  extrusion  to
produce an ibuprofen-nicotinamide cocrystal 234. Additionally, fa-
vipiravir  and  theophylline  cocrystals  have  been  prepared  using
the  spray-dried  method  for  treating  respiratory  viral  infecti-
ons  235.  Furthermore, Nandi et  al.  developed  a  microchannel   re-
actor-based  continuous  liquid  antisolvent  crystallization  setup
with downstream processing, providing a reproducible homogen-
eous  crystallization  environment  230.  Over  the  past  decade,  con-
tinuous crystallization has become the preferred standard in the
pharmaceutical industry 236, 237. Crystal engineering aids in select-
ing suitable  supramolecular  synthetic  materials.  Enhanced regu-
latory  measures,  reduced  R&D  resource  consumption,  and  ad-
vancements in production technology encourage pharmaceutical
companies to invest more in DDC development.

The  development  of  DDCs  faces  several  notable  challenges.
Firstly,  the  design  and  synthesis  of  DDCs  pose  a  significant
hurdle.  High-throughput cocrystal  screening  is  commonly   con-
ducted through hydrogen bond supramolecular interactions, lim-
iting the  assembly  of  DDCs  from  alternative  supramolecular   in-
teractions  such  as  electrostatic  interactions  and  π-π  packing  200.
Furthermore, the selected DDC combinations may not represent a
pharmaceutically acceptable pairing with the desired therapeutic
effects.  Secondly,  from the perspective of  production conversion
and  practical  treatment,  selecting API  combinations  from   exist-
ing market  or  development  products  is  economically  and   logic-
ally  sound.  However,  the limited  selection  range  of  APIs   in-
creases the complexity of DDC design 238. Generally, the synergist-
ic efficacy of multiple drugs is significantly influenced by the pre-
cise proportion and dosage of the constituent drugs 239.  In DDCs,
there is  typically  a  fixed stoichiometric  ratio  between the drugs,
usually  2∶1,  1∶1,  or  1∶2.  Nevertheless,  this  stoichiometric  ratio
does not always align with the optimal dose ratio for clinical effic-
acy. 

5. Self-assembled pure drug nanoparticles (SAPDNPs)

SAPDNPs  represent  a  carrier-free DDS  that  harnesses   inter-
action  forces,  such  as  electrostatic  interactions,  hydrogen bond-
ing,  and  hydrophobic  interactions,  between  drugs  or  drug-drug
conjugates 172, 240, 241. Through the process of self-assembly, single
or  multiple  drugs  aggregate  into  nanostructures  with  a  narrow
size distribution. These nanostructures exhibit a high drug encap-
sulation rate (> 92%), excellent stability, co-delivery of  different
free drugs, and controlled release behavior, making them a prom-
ising  candidate  for  the  next  generation  of  PDNs  242. The  produc-
tion of SAPDNPs does not necessitate carriers or complex techno-
logies  and  tools,  and  the  assembly  process  is  characterized  by
simplicity, environmental friendliness, low cost, and high repeat-
ability,  facilitating  large-scale  production  243.  Self-assembly  is  a
self-improving process  in  which  components  automatically   or-
ganize  into  patterns  or  structures  without  human  intervention.
During  this  process,  drug  molecules  spontaneously  form  well-
defined  and  stable  aggregations  driven  by  non-covalent  interac-
tions. By adjusting and combining assembled elements and driv-
ing forces, a diverse array of supramolecular self-assembly struc-
tures and functions can be derived.

SAPDNPs represent an emerging field, particularly in cancer
treatment  and  diagnosis.  Many  clinical  anticancer  drugs  have
been  criticized  for  their  narrow  therapeutic  window  and  high
toxicity.  SAPDNPs  demonstrated  unparalleled  advantages  over
traditional DDSs in terms of drug loading capacity, target site ac-
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cumulation,  production,  and  preparation.  Notably,  the  applica-
tion of SAPDNPs has extended to other therapeutic areas, includ-
ing  anti-inflammatory,  antibacterial,  Parkinson’s  disease  (PD),
and  immunotherapy.  For  instance,  the  NLRP3  inflammasome
serves as a key drug target for PD treatment 244. QC and polyethyl-
ene glycol (PEG) were self-assembled into carrier-free nanomedi-
cines  (NanoQC)  to  inhibit  NLRP3 inflammation-mediated neuro-
degeneration  245.  Similarly,  osteoarthritis  (OA),  the most   com-
mon  joint  disease,  exhibits  increased  incidence  and  prevalence
with age 246, 247. Curcumin and icariin, two natural small-molecule
drugs, were self-assembled into Cur/ICA NPs through π-π stack-
ing 248.  Compared with the OA group, the expression levels of IL-
1β and IL-6 in the Cur/ICA NPs group were down-regulated by 49
and  126  times,  respectively.  SAPDNPs  also  seem  to  be  showing
their strength in anti-infective therapy. It is well known that anti-
biotic abuse has further increased the resistance of bacteria, and
the  public  urgently  needs  new  antimicrobial  treatment  options.
The  natural  antibacterial  agents  GA  and  berberine  (BBR)  were
self-assembled into spherical nanoparticles (GA-BBR NPs) 249. GA-
BBR NPs exhibited a more potent in vitro antibacterial effect com-
pared to the free BBR and GA-BBR mixture. However, the non-co-
valent or  covalent  combination  of  drugs  and  functional   mo-
lecules purposefully modulates the overall properties of the drug
formulation.  Variations  in  drug  formulations  and  preparation
methods  influence  the  supramolecular  interactions  that  govern
self-assembly and treatment efficacy. 

5.1. Design and fabrication of SAPDNPs

The self-assembly ability of drugs is a critical factor in the de-
velopment of SAPDNPs. For instance, HCPT self-assembled nano-
particles with an irregular and uneven structure aggregated and
precipitated  in  aqueous  conditions.  It  meant  that  HCPT  was  not
suitable to produce stable HCPT self-assembled nanoparticles 250.
Establishing a  computational  and design method that  can accur-
ately  and  quantitatively  predict  the  formation  of  stable  SAP-
DNPs from APIs is essential. Various techniques, such as quantit-
ative  structure-nanoparticle  assembly  prediction  (QSNAP),  mo-
lecular docking, simulation, and supramolecular engineering, are
employed to predict the self-assembly capability of APIs. Shamay
et al. utilized the QSNAP model to design SAPDNPs 251. The nano-
particle assembly and size were highly predicted by electrotopo-
logical  molecular  descriptors  (SpMAX4Bh(s)  and  GetAway  R4e),
respectively.  Nineteen  compounds  with  SpMAX4_Bh(s)  >  6.99
and 25 compounds with SpMAX4_Bh(s) < 6.99 were selected for
nanoparticle  formation  experiments  251.  Remarkably,  all  but  one
drug  (avasimibe)  behaved  as  predicted  by  the  SpMAX4_Bh(s)
value.  The  discrepancy  between  the  size  of  these  nanoparticles
and  the  value  predicted  by  GETAWAY  R4e  is  within  15  nm  251.
This discovery demonstrates the potential of QSNAP in designing
SAPDNPs.  However,  significant  advancements  are  still  required
for it to become a practical tool. Building upon existing technolo-
gies and expertise, researchers are conducting extensive investig-
ations into the mechanisms and novel formulations of  SAPDNPs.
Numerous  studies  showed  that  the  formation  and  stability  of
SAPDNPs  were  primarily  influenced  by  the  proportion  of  free
drugs, the linkers of amphiphilic prodrugs, and the self-assembly
method.

SAPDNs  can  form  through  non-covalent  interactions  among
the drug molecules themselves. The quantity and variety of func-
tional  groups  present,  which  is  determined  by  the  number  of
drugs involved, influence the hydrophobic-hydrophilic or electro-
static balance between molecules. This balance dictates the inter-
molecular  interactions  that  drive  the  self-assembly  process.  A
study  demonstrated  that  the  addition  of  a  hydrophobic  near-in-
frared  emitting  element  transformed  camptothecin-Gemcitabine
carrier-free amphiphilic prodrugs (CPT-ss-GEM) from nanowires

to uniform spherical structures 32, 252. The primary reason may be
the replacement of  π-π interactions by hydrophobic interactions
as the dominant force in self-assembly. The ratio of drugs can im-
pact  the  particle  sizes  and  shapes  of  SAPDNPs  252.  For  instance,
deprotonated  Ce6  can  co-assemble  with  HCPT, which has  a   lim-
ited self-assembly capacity 250.  In this system, the morphology of
the co-assembled structure is significantly influenced by the pro-
portion of hydrophilic components. The 1∶1 and 2∶1 (HCPT∶Ce6)
co-assembled systems, which have higher hydrophilicity, form ir-
regular  needle-like  nanostructures.  In  contrast,  the  4∶1 and 8∶1
(HCPT∶Ce6)  co-assembled  systems,  with  lower  hydrophilicity,
yield  uniform  rod-like  nanostructures  or  even  mutually  nested
structures  166. Altering  the  molar  ratio  of  multiple  drugs  can   af-
fect  the  structure  of  self-assembled  systems,  resulting in   forma-
tions  such  as  brick  mud  structures  or  core-shell  structures  206.
The  varying  shapes  of  SAPDNs  significantly  influence  their  in
vitro  release,  in  vivo  pharmacokinetics,  and efficacy.  PTX   nano-
crystals  and amorphous indomethacin (IDM) form a "core-shell"
structure  through  intermolecular  interactions,  with IDM   as-
sembly  on the  surface  39.  Based on the  structure  and  in  vitro  re-
lease data, researchers hypothesized that IDM in IDM-PTX would
be  released  rapidly  to  modulate  the  immune  system,  while  the
PTX nanocrystals would effectively target tumor tissues and pro-
long biological half-life 39.

The self-assembly process of amphiphilic prodrugs involves a
competition between drug-water and drug-drug interactions. The
formation and stability of amphiphilic prodrug self-assembly are
driven  by  the  hydrophobic-hydrophilic  equilibrium.  Specifically,
the ratio between hydrophilic and hydrophobic segments can in-
fluence  the  formation  and  stability  of  the  self-assembly,  which
can  be  modified  by  altering  chains  and  functional  linking  gro-
ups  253. Linkers  altered  the  spatial  position  and  rotational   de-
grees of freedom between prodrugs to affect the driving force and
energy  barrier  of  the  self-assembly  and  modified  the  micro  or
macro  properties  of  supramolecular  material  254.  For  instance,
PTX  typically  forms  needle-like  crystals  due  to  crystal  growth,
which  hinders  the  formation  of  self-assembly. Pei  et  al.   intro-
duced  a  soft  and  freely  rotatable  σ-bond  (a  bicarboxylic  acid
bond)  between  PTX  dimers  to  provide  more  flexible  space,  pre-
venting the orderly and stable lattice arrangement of PTX and fa-
cilitating self-assembly 255.

SAPDNPs can be  prepared using  various  methods,  including
antisolvent  precipitation,  template-assisted  techniques,  and  in
vivo  self-assembly  256. The  conventional  nanoprecipitation meth-
od  has  limitations  such  as  low  productivity,  relatively  large
particle  size,  and  significant  batch-to-batch  variance  252. In   con-
trast,  the  template-assisted  method  offers  a  novel  and  size-con-
trollable  preparation  strategy,  utilizing templates  such  as   anod-
ized aluminum oxide (AAO) and ice 252, 257. Zhang et al. developed
a technique where a drug organic solution is loaded into an AAO
or  ice  template  252,  257.  Upon  removal  of  the  organic  solvent,  the
drugs  self-assemble,  and  the  template  is  subsequently  stripped
away,  yielding  uniform  SAPDNPs.  The  ice  template-assisted
method  is  particularly  advantageous,  as  it  produces  SAPDNPs
with  high  reproducibility  and  adjustable  size  while  avoiding  the
use  of  inorganic  template  materials.  This  green,  low-cost,  and
high-yield production  method  represents  a  significant   advance-
ment in SAPDNP preparation 257. 

5.2. Types of SAPDNPs
 

5.2.1. SAPDNPs composed of a single drug
Nanoparticle  preparation  via  nano-precipitation  may  result

in drug  molecules  dissolving  or  precipitating  into  large   aggreg-
ates.  Interestingly,  certain APIs  possess  the  ability  to   independ-
ently  and  spontaneously  self-assemble  into  SAPDNPs  242.  Fan  et
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al.  designed a  self-assembled ursolic  acid  nanoparticle  (UA-NPs)
system utilizing electrostatic and hydrophobic interactions 258. UA-
NPs demonstrated higher cellular uptake rates and toxicity com-
pared  to  ursolic  acid  in  A549  cells.  Furthermore,  Li et  al.   de-
veloped  self-assembled spherical  nanoparticles  composed  of   di-
hydroartemisinin  (DHA  NPs)  259.  In  a  neutral  environment  (pH
7.4),  DHA  NPs  released  only  20%  of  their  dihydroartemisinin
payload over 48 h. Conversely, in an acidic environment (pH 5.0),
more  than  65%  of  DHA  was  released  from  the  DHA  NPs.  These
results  suggest  that  DHA  NPs  have  the  potential  for  anti-tumor
therapy in the weakly acidic tumor microenvironment (TME). Ad-
ditionally,  numerous  other  chemotherapy  drugs  exhibit  self-as-
sembly  capabilities,  including  PTX  260,  6-mercaptopurine,  and
curcumin  261.  These  self-assembly systems  share  similar  advant-
ages,  such  as  simple  preparation,  ultra-high drug  loading   effi-
ciency, and significantly enhanced delivery efficacy. 

5.2.2. SAPDNPs composed of multiple drugs
The co-assembly  of  multiple  drugs  exhibits  a  higher  level  of

complexity compared to single-drug systems. To achieve equilib-
rium,  a greater  number  of  drug  molecules  must  balance  numer-
ous  molecular  interactions  262.  Co-assembly  systems  involving
multiple  drugs  encompass  two  primary  modes:  the  co-assembly
of hydrophilic and hydrophobic drugs and the co-assembly of hy-
drophobic-hydrophobic  drugs.  For  instance,  various natural  act-
ive  compounds  or  novel  chemical  entities,  such as  BBR and  cin-
namic  acid,  demonstrated  the  ability  to  co-assemble into   nano-
particles,  presenting  potential  applications  in  precision  ther-
apy 263–266.

Monotherapy  often  exhibits  significant  limitations  in  the
treatment  of  diseases.  As  a  combination  therapy  strategy,  mul-
tidrug self-assembly offers enhanced functionality, particularly in
tumor  therapy, by  improving  efficacy,  reducing  side  effects,  and
increasing  patient  compliance.  In  the  middle  and  late  stages  of
cancer,  chemotherapy frequently  becomes the sole  conventional
treatment option.  Considering  the  potential  toxicity  of   chemo-
therapeutic  agents,  SAPDNPs  composed  of  chemotherapeutic
agents  with  different  anti-tumor mechanisms represent  a  prom-
ising  co-delivery strategy.  This  approach  may  achieve  rapid   tu-
mor  eradication  while  avoiding  long-term toxicity.  For  instance,
mitoxantrone, PTX, and HCPT are  three  commonly  used chemo-
therapy  drugs  267,  268.  Interestingly,  co-assembly  did  not  occur
between  any  two  of  the  three  drugs  but  was  observed  when  all
three  were  combined.  This  co-assembled  combination  therapy
demonstrated  significantly  higher  cytotoxicity  compared  to  the
three  free  drug  groups  and  the  mixture  of  the  three  drugs  269.
Moreover, it substantially enhanced cytotoxicity against resistant
cells  269.  Similarly,  tumor  complications,  including  inflammation,
pain, and infection, are often associated with further cancer pro-
gression. These  complications  are  evidently  detrimental  to   tu-
mor  treatment  and  long-term  survival.  Co-assembling  sympto-
matic drugs and chemotherapeutic agents represents a beneficial
anticancer strategy.

Minimizing  adverse  effects,  alleviating  pain,  and  enhancing
patient compliance  are  crucial  aspects  of  effective  disease  man-
agement.  Photodynamic  therapy  (PDT),  a  non-invasive  thera-
peutic and diagnostic approach approved by the FDA, has the po-
tential to reduce the likelihood of tumor recurrence and drug res-
istance 270–274.  As reported by Stapleton et  al., heat  and radiation
can  modulate  fluid  dynamics,  enhance the  EPR  effect  and   im-
prove  the  transport  efficiency  of  nanomedicines  275,  276.  Building
upon  this  foundation,  researchers  have  developed  self-as-
sembled  carrier-free nanomedicines  that  incorporate  a   photo-
sensitizer (PS) and additional components, such as phototherapy
enhancers  and  chemotherapeutic  agents  277.  To  achieve  optimal
phototherapy outcomes, efforts focused on reducing oxygen con-
sumption, disrupting antioxidant defense mechanisms, and com-

bining chemotherapeutic drugs. For instance, Li et al. engineered
a  self-assembly  delivery  system  comprising  the  photodynamic
synergist  TH588  and  the  PS  Ce6  278.  TH588  interfered  with  the
ROS defense system in tumor cells, potentiating the DNA oxidat-
ive damage induced by Ce6. Similarly, Zhang et al. developed SAP-
DNPs  containing  genistein,  a  GLUT-1  inhibitor  flavanone,  and
Ce6  279,  achieving  synergistic  effects  through  starvation  therapy
and PDT without  significant  cytotoxicity  associated with chemo-
therapeutic  agents.  PA  imaging  provided  visual  guidance  and
monitoring for PDT, demonstrating the high tumor accumulation
efficiency  of  the  nanoparticles  280.  Additionally,  various  photo-
therapy enhancers, such as vitamin B 281, iron apoptosis 282, oxid-
ative  phosphorylation  inhibitors  283,  and  glutathione  transferase
inhibitors 284, were explored to disrupt the ROS system in tumor
cells,  thereby  enhancing  the  anti-tumor  and  imaging  effects  of
PDT.  Furthermore,  Guo  et  al.  utilized  hydrophobic  ursolic  acid,
PTX,  and  indocyanine  green,  an  amphiphilic  tissue-penetrating
agent,  to  create  a  dual  anti-tumor  self-assembled  nanodrug  285.
This  spherical  nanodrug  significantly  improved  the  solubility  of
ursolic  acid and PTX, maintained the photostability of   indocyan-
ine green, and achieved prolonged accumulation at tumor sites.

Conventional  cancer  treatments,  such  as  surgical  resection
and chemotherapy, cure less than 50% of patients 286, 287. Immun-
otherapy, which  aims  to  enhance  immune  defenses  to  eliminate
malignant  cells,  revolutionized  cancer  treatment  and  led  to  a
deeper  understanding  of  tumors  288. A  study  combining  an   im-
mune checkpoint blocker (anti-CTLA-4) and a chemotherapeutic
sensitizer  (lamonidin)  in  a  co-delivery liposome  system demon-
strated an enhanced immune response to tumor cells 289. As SAP-
DNPs  have  a  higher  loading  capacity  than  liposomes,  the  re-
searchers  suggest  that  combining  immune  checkpoint-blocking
therapy and adoptive T-cell transfer with chemotherapy and pho-
totherapy could  be  an  effective  approach  to  treating  tumors  us-
ing  a  self-assembled  carrier-free  delivery  system.  For  instance,
the  study  incorporated  the  immune adjuvants metformin  and  7-
ethyl-HCT  into  self-assembled  nanoparticles  (MS-NPs)  290,  291.
Treatment using MS-NPs demonstrated enhanced chemotherapy
and  immunotherapy  effects  in  mice  compared  to  monotherapy,
resulting in a higher survival rate. 

5.2.3. SAPDNPs composed of prodrugs
SAPDNPs can be formed by amphiphilic precursor drugs, in-

tegrating  the  benefits  of  both  nanoparticles  and  prodrugs.  This
approach involves linking the active drug to other drugs or active
components via cleavable bonds.  In drug-conjugate delivery sys-
tems,  conjugates with  distinct  properties  impart  specific   func-
tionalities  to  the  system,  such as  sustained  and  controlled   re-
lease,  immunogenicity  reduction  or  elimination,  and  biological
half-life extension 292, 293.

APIs, functioning as hydrophobic or hydrophilic components,
can be modified by small molecules or high polymers to form am-
phiphilic  prodrugs,  providing  opportunities  for  the  self-delivery
of  drugs  253.  Hydrophilic  groups  appear  to  be  indispensable  for
the  construction  of  amphiphilic  prodrugs.  Long  et  al.  designed a
self-assembled nanodrug  (Nano  DOPA)  consisting  of  an   am-
phiphilic  block  copolymer  [PEG-b-P  (L-DOPA (OAc)2)] 

294.  In  the
behavioral test of L-DOPA-induced dyskinesia mouse models, ab-
normal  involuntary  movement  scores  in  the  Nano  DOPA  group
showed a more significant reduction compared with the L-DOPA
group,  suggesting  that  Nano  DOPA  may  be  a  potential  drug  for
Parkinson’s treatment. Similarly, the PTX-succinic conjugate (PTX-
SA)  joined  PTX  and  succinic  acid  together via  an  ester  bond  295.
Parkinson’s treatment. Similarly, the PTX-succinic conjugate (PTX-
SA)  self-assembled  into  nanofibers  in  aqueous  solution  295,
achieving a drug-loading of PTX as high as 89%. With the hydro-
lysis of ester bonds, PTX was slowly released from PTX-SA, which
enhanced its anti-tumor efficacy 295.
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The incorporation  of  small  hydrophobic  moieties  can   en-
hance  the  balance  and  interplay  of  intermolecular  interaction
forces, enabling the modification of water-soluble drugs to exhib-
it  spontaneous  aggregation  behaviors.  This  approach  facilitates
the  design  of  self-assembly  systems  for  water-soluble  drugs.  An
effective strategy involves combining water-soluble drugs with a
series of  fatty  acid  or  sterol  analogs  to  form  amphiphilic   prod-
rugs and promote their aggregation behaviors. For instance, Jing
et al. developed a conjugate of docetaxel and oleic acid connected
via thioether bonds 296. This conjugate was utilized to obtain oxid-
ation  and  reduction-sensitive SAPDNPs  through   nanoprecipita-
tion.  Similarly,  amphiphilic molecules  (SQdFdC)  have  been   syn-
thesized  297.  SQdFdC  demonstrated  a  prolonged  blood  half-life
and enhanced anti-tumor activity compared to gemcitabine.

A  crucial  aspect  of  self-assembled  pro-DDSs  is  the  ability  to
release  APIs  from  their  carriers,  enabling them  to  exert   thera-
peutic effects on the organism. Self-immolation linkers represent
a powerful  tool  for developing targeted pro-DDSs that conjugate
multiple drugs. These linkers are designed to respond to specific
chemical  or  physical  stimuli,  such  as  acidic  environments,  en-
zymes, or redox conditions,  facilitating targeted delivery of mul-
tiple  drugs  298, 299.  Homodimeric  prodrugs  based  on  self-immola-
tion linkers can self-assemble into nanomedicines with high drug
loading capacities 300, 301. For instance, a novel paclitaxel-s-s-pacl-
itaxel  (PTX-s-s-PTX) conjugate was synthesized using a disulfide
bond, which self-assembled into uniform nanomedicines (PTX-s-s-
PTX NPs) 302. The high drug loading (78%) and redox-sensitive di-
sulfide bonds of PTX-s-s-PTX NPs enabled rapid and extensive re-
lease of PTX within tumor cells. Similarly, conjugates of different
drug  molecules  can  self-assemble  into  heterodimeric  prodrugs,
which offer advantages for combination therapy compared to ho-
modimeric prodrugs. The FDA has approved irinotecan (CPT-11)
and topotecan for the treatment of colorectal and small-cell lung
cancer,  respectively.  However,  the clinical  application  of   camp-
tothecin  (CPT)  was  significantly  limited  by  its  poor  solubility,
high systemic toxicity, and instability 303.  Ao et al. conjugated the
hydrophobic CPT with the hydrophilic photothermal agent neoin-
docyanine green, which self-assembled into IR820-SS-CPT NPs 304.
The  disulfide  bond  of  IR820-SS-CPT  was  cleaved  in  response  to
reduced  glutathione  in  the  TME,  releasing  IR820  and  CPT  for
combined chemo-photothermal treatment. Recently, several SAP-
DNPs  consisting  of  imaging  agents  and  drugs  were  designed  to
respond to the acidic TME through pH-responsive linkers, such as
hydrazones,  acetals,  esters,  and  imines.  For  example,  Yu  et  al.
synthesized  ketone-linked  amphiphilic  glucose-etoposide  prod-
rugs  that  self-assembled  into  nanomedicines  activated  by  dual
enzyme and acid stimulation, resulting in the effective release of
acetone and glucose 305.

Water-soluble  biomacromolecules  were  conjugated  with
APIs  through  hydrophilic  parts  or  self-immolation  junctions  306.
Drug-peptide  amphiphilic  conjugates  that  self-assemble  into
nanostructures  are  widely  used  to  deliver  various  anticancer
drugs  for  tumor  treatment  307–309.  For  instance,  Man et  al.   de-
veloped cathepsin B-cleavable peptide (Phe-Arg-Arg-Gly, FRRG)-
doxorubicin prodrugs (FRRG-DOX). FRRG-DOX self-assembles in-
to  stable  targeted  SAPDNPs,  which  target  tumors  and  enhance
therapeutic  efficiency  310.  Interestingly,  some water-soluble pep-
tide-drug conjugates cannot self-assemble in vitro. However, they
can undergo supramolecular self-assembly 311 and biocompatible
condensation  reactions  under  enzyme  induction  312,  313.  Com-
pared  to  normal  cells,  certain  enzymes  often  exhibit  abnormal
activity  in  cancer  cells.  Guided  by  these  enzymes,  amphiphilic
prodrugs  self-assemble  into  stable  nanostructures  through
supramolecular  interactions  (π-π  interactions,  hydrogen  bonds,
and  intermolecular  charge  interactions)  314. These   nanostruc-
tures  demonstrate  enhanced  cellular  uptake  and  drug  retention
in  cancer  cells,  which  is  particularly  beneficial  for  overcoming

multidrug  resistance  34.  Liang  et  al.  combined  PMI,  a  functional
peptide that induces cancer cell apoptosis, with HCPT to produce
a  self-assembling  drug-peptide  conjugate  315.  This  amphiphilic
conjugate modulated peptide folding and self-assembly behavior
to obtain self-assembled nanomedicines, exhibiting enhanced cel-
lular uptake and nuclear accumulation capacity. Similarly, Miao et
al.  designed  the  acetyl-Arg-Val-Arg-Arg-Cys(StBu)-Tyr(I-125)-2-
cyanobenzothiazole  conjugate  313.  Overexpressed  furin  in  tumor
cells regulates the biocompatible condensation reaction between
the  1,2-amino-mercaptan  group  of  cysteine  and  the  cyanide
group of 2-cyanobenzothiazole, allowing the conjugate to self-as-
semble into radioactive nanoparticles (125I-NPs) in vivo. The cel-
lular  enrichment  of  125I-NPs  also  prevents  cell  clearance,  ren-
dering them a promising in vivo imaging technique 313.

Nucleic acids, such as messenger RNA (mRNA) and small in-
terfering  RNA  (siRNA),  are  highly  hydrophilic  and  negatively
charged  natural  biological  macromolecules.  DDSs,  including  lip-
ids and polymers, are necessary for their in vivo and in vitro deliv-
ery  316,  317.  In  comparison  to  PDNs,  the  potential  side  effects  of
polymer materials and synthetic lipids as carriers have not been
thoroughly  elucidated  318.  However,  the  presence  of  phosphoric
acid and bases in nucleic acids provides the opportunity to devel-
op  nucleic  acid-API  conjugates  and  SAPDNPs  317.  For  instance,  a
cationic  PS  was  conjugated  with  the  siRNA  targeting  Polo-like
kinase  1,  which  then  self-assembled  into  siRNA-photosensitizer
nanoparticles  (siPLK1-NB  NPs)  through  electrostatic  attrac-
tion 319. Upon light exposure, siPLK1-NB NPs effectively inhibited
the growth of external tumor cells by downregulating the expres-
sion of PLK1 and inducing photodynamic cell death. 

6. Active-targeted PDNs

Active targeting  demonstrates  superior  precision  and  deliv-
ery efficiency compared to passive targeting. This approach signi-
ficantly  enhances  the  internalization  and  accumulation  of  drugs
at  target  sites,  resulting  in  improved  therapeutic  outcomes  320.
The  modification  of  antibodies  or  the  combination  of  antibodies
with  drugs  yields  carrier-free nanomedicines  with  high  selectiv-
ity  for  the  target,  enabling  the  simultaneous  delivery  of  both
therapeutic  agents  321,  322.  Active-targeted  PDNs,  which  include
nanobodies  and  ADCs,  exhibit  promising  potential  in  disease
treatment. 

6.1. Nanobodies

Antibodies are widely employed in the treatment of solid tu-
mors.  However,  their efficacy is limited by their large size,  inad-
equate  tumor  penetration,  and  instability  within  solid  tissues.
Nanobodies,  derived  from  the  unique  functional  heavy  chain  in
camel serum, represent a novel and distinct antigen-binding frag-
ment 323.  With a molecular weight of 90 kDa, nanobodies exhibit
improved tumor penetration properties 324, 325. Furthermore, their
variable  antigenic-binding  domain  (VHH)  possesses  a  prolate
shape with dimensions of 4 nm × 2.5 nm × 3 nm 326.  Nanobodies
combine the specific targeting ability of antibodies with the drug
delivery systems of  PDNs.  They possess excellent  characteristics
such as small  size, high stability, strong antigen-binding affinity,
water solubility, and natural origin, which generate significant in-
terest in their potential for disease diagnosis and treatment. Not-
ably, Caplacizumab received approval  from the EMA and FDA in
2018  for  the  treatment  of  thrombotic  thrombocytopenic  purp-
ura 92. Additionally, numerous nanobodies are currently undergo-
ing clinical studies for the treatment of various diseases, particu-
larly cancer 327, 328.  As a result, nanobodies have bright prospects
in the treatment and diagnosis, which inspires enthusiasm for in-
vestment by many pharmaceutical companies.

Consequently, nanobodies demonstrate promising prospects
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in  both  treatment  and  diagnosis,  garnering enthusiasm  and   in-
vestment  from  many  pharmaceutical  companies.  Nanobodies
possess  unique  structural  characteristics  that  differentiate  them
from  monoclonal  antibodies.  These  distinct  features  include:
(1) Strong affinity: The antigen-binding loop of nanobodies facil-
itates  interaction  with  concave  paratopes  on  the  antigen  surf-
ace  324,  exhibiting an  affinity  equal  to  or  surpassing  that  of   con-
ventional antibodies 329, 330; (2) High stability and solubility: Addi-
tional disulfide  bonds  between CDR1 and CDR3 confer  high  sta-
bility to nanobodies, enabling them to retain full binding capacity
after one week at  37 °C 331–333.  Furthermore, crystal  data of  VHH
and its  antigen complex confirmed the conversion of  its  frame-2
region  from  a  hydrophobic  to  a  more  hydrophilic  region  334,  335,
contributing to the high solubility of nanobodies. (3) Low immun-
ogenicity:  The  gene  encoding  VHHs  shares  high  homology  with
human  VH  families  3  and  4  336,  337.  Moreover,  humanized  nan-
obodies  further  reduce  immunogenicity  338. Temple  et  al.   gener-
ated  a  series  of  humanized  anti-CD72 nanobodies  for  B-cell ma-
lignancies  339.  (4)  Rapid  tissue  penetration  and  blood  clearance:
Compared  to  monoclonal  antibodies,  small-sized  nanobodies  do
not  exhibit  a  barrier  effect  at  the  binding  site  340,  resulting  in
more uniform  tumor  distribution.  Tumor  interstitial  fluid   pres-
sure  and  the  EPR  effect  facilitate  the  penetration  of  small-sized
nanobodies  into  tumors  335.  However,  free nanobodies  are   rap-
idly cleared from the bloodstream 341, which is advantageous for
diagnostic  applications  but  detrimental  for  nanobody-drug  con-
jugates.  (5)  Construction  and  production:  Nanobodies  can  be
readily expressed in microbial systems (e.g., bacteria, insects, and
fungi)  and  quickly  selected  from  display  libraries.  This  process
eliminates  the  need  for  cell  culture,  screening,  and  purification,
thereby  reducing  production  costs  342,  343.  Fig.  3A  illustrates  the
nanobodies produced by phage display libraries.

Nanobodies  are versatile  tools  utilized  in  various  domains,
including  scientific  research,  disease  diagnosis,  and  treatment.
Nanobodies can accurately identify and quantify clinical biomark-
ers  344. The  elongated  VHH  in  nanobodies  exposes  convex   para-
topes  well-suited to  bind  the  fusing  or  cryptic  epitopes  of   anti-
gens 345. Leveraging this principle, nanobodies were employed to
block  the  active  site  in  lysozyme  346,  347,  identify  the  pathogen
Trypanosoma 348–350,  successfully  distinguish Brucella and Yersin-
ia genera 351–353, and detect taeniasis solium infec�tion 354. Further-
more,  researchers  successfully  developed  a  sensitive  sandwich
enzyme-linked  immunosorbent  assay  (ELISA)  to  detect  porcine
reproductive and respiratory syndrome viruses using two specif-
ic nanobodies 355. The sensitivity of this assay was comparable to
that of a real-time polymerase chain reaction assay, demonstrat-
ing  the  potential  of  nanobodies  for  ELISA  applications  356.
Moreover, high stability and water solubility expand the scope of
nanobodies  as  research  tools.  For  instance,  producing  a  high-
quality diffractive crystal of the target molecule is a critical factor
for the structural analysis of biological macromolecules 326. Crys-
tallography studies showed that the nanobody VHH-antigen com-
plex  was  a  crystallization  chaperone  357. It  can  promote   inter-
molecular  interactions  in  the  lattice  and  reduce  conformational
heterogeneity to  increase  the  crystallization  ability  of  the   tar-
geted molecule 357–359.

Nanobodies, compact antibody fragments, represent a prom-
inent application in high-resolution imaging 329. When conjugated
with functional  molecules  such as  dyes,  radionuclides, or  biotin,
nanobodies  exhibit  specific  binding  to  biological  targets.  This
complex generates signals  at  the target  site, enabling non-invas-
ive visual diagnosis. For instance, nanobodies targeting the ALFA-
tag proved suitable for super-resolution imaging, intracellular de-
tection,  immunoprecipitation,  and  Western  blotting  assays  360.
The nanobody E8, which targets CDH17, has demonstrated effic-
acy as an imaging probe for gastric cancer 361. Following the injec-
tion  of  E8-IR800 into  tumor-bearing  mice,  significantly  stronger

fluorescent signals  were observed at  the tumor site.  Notably, E8
exhibited minimal presence in the heart, brain, lungs, or kidneys.
Furthermore, staining of  critical  organs such as the brain, heart,
lung,  and  stomach  following  E8  nanobody  injection  revealed  no
discernible  positive  staining, with  the  exception  of  liver  tissues,
confirming E8’s specific binding activity for CDH17-overexpress-
ing tumors. Similarly, radionuclide-labeled nanobodies were em-
ployed  for  imaging  atherosclerotic  lesions  362,  363.  However,
nanobody-based imaging  techniques  encounter  certain   limita-
tions,  including  rapid  renal  clearance,  challenges  in  penetrating
the blood-brain barrier, and insufficient soluble targets.

Nanobody-based  therapies  are  divided  into  two  primary
strategies: he use of pure nanobodies as receptor antagonists and
the  conjugation  of  nanobodies  with  functional  molecules.  These
novel  therapeutic  approaches  optimize  efficacy  and  expand  the
range of potential applications, including cancer 364, 365, inflamma-
tion  366,  367,  viruses  368, Alzheimer’s  disease  369,  toxins  370,  parasi-
tes 246, and autoimmune diseases 92. For instance, when the nucle-
otide-binding  domain  (NBDs)  of the  adenosine  triphosphate
(ATP)-binding  cassette  transporter  P-gp  binds  to  ATP,  the  con-
formation of the P-gp transmembrane domain changes 371, 372, res-
ulting in P-gp transporting substrates extracellularly. The high-af-
finity  nanobody  Nb592  binds  to  the  NBDs,  inhibiting  the  ATP-
driven  conformational  transformation  of  the  P-gp  transporter,
demonstrating that nanobodies can effectively inhibit ATP-hydro-
lyzed P-gp. Furthermore, as receptor antagonists, nanobodies can
block  receptor-mediated  life  activities,  thereby  interfering  with
disease progression and development.  Esparza et  al  .  designed a
nanobody  (NIH-CoVnb-112) that  binds  to  the  spike  protein   re-
ceptor-binding  domain  of  severe  acute  respiratory  syndrome
coronavirus  2  (SARS-CoV-2)  373.  The  NIH-CoVnb-112  prevented
the  interaction  between  the  spike  protein  and  angiotensin-con-
verting enzyme 2 to treat SARS-CoV-S and simplify antiviral vac-
cine production. Clinically, serum therapy remains widely used to
treat  patients  with  poisoning.  Nanobodies  are  ideal  serum toxin
scavengers for detoxifying natural toxins, such as snake and scor-
pion  venom  370.  Darvish  et  al.  developed  a  nanobody  (Nb12)  for
black  scorpion  venom  374,  and  after  intraperitoneal  injection  of
lethal  toxin  doses,  mice  administered  intravenous  injections  of
Nb12 after 20 minutes all survived successfully. Due to their high
specificity  and  low  toxicity,  nanobodies  are  becoming  effective
therapeutic  agents  for  autoimmune  diseases,  as  exemplified  by
the 2018 approval  of  caplacizumab by the EMA and the FDA for
the treatment of thrombotic thrombocytopenic purpura 92.

Nanobodies  can  be  conjugated  with  a  variety  of  functional
molecules,  including small-molecule drugs,  toxins, enzymes, and
imaging agents, to facilitate combined therapeutic approaches 375

(Fig. 3B). For instance, Raimond et al. developed an anti-epiderm-
al growth factor receptor (EGFR) nanobody-PS conjugate that in-
tegrates  immunotherapy  with  PDT  376. These  conjugates   pre-
cisely deliver PS into tumors via the anti-EGFR nanobodies, indu-
cing  cell  apoptosis  in  EGFR-overexpressing  tumor  376.  Addition-
ally,  Maza  et  al.  synthesized  nanobody-natural  killer  (NK)  cell
conjugates 377, which effectively eliminate tumor cells  due to the
specific  binding  and  killing  effect  of  NK  cells.  Notably,  anti-pro-
grammed cell  death ligand 1  (anti-PD-L1)  nanobodies  combined
with  Toll-like  receptor  7  (TLR7)  agonists  form  double-targeted
nanomedicines 364. TLR7 agonists activate immunity and upregu-
late programmed cell death ligand 1 (PD-L1) levels, while anti-PD-
L1 nanobodies  serve  as  immune checkpoint  blockers  that  target
tumors. This  conjugate  activates  both  innate  and  adaptive   im-
munity against tumors. 

6.2. ADCs

To address the limitations of therapeutic antibodies, such as
low activity, poor  stability,  and short  circulation  time,  research-
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ers have  modified  conventional  immunoglobulins.  ADCs  are   at-
tracting increasing attention in the antibody market, with global
sales projected to exceed $16.4 billion by 2026 94, 378. ADCs are se-
lective  and  carrier-free  anti-tumor  nanomedicines  that  can
achieve  effective  cytotoxicity  and  drug  loading.  ADCs  consist  of
three  components:  monoclonal  antibodies  (mAbs),  cytotoxins,
and chemical linkers. After the mAb specifically binds to antigens
on  the  surface  of  tumor  cells,  ADCs  selectively  deliver  cytotoxic
drugs,  inducing  tumor  cell  death  276  (Fig.  4).  To  date,  14  ADCs
have been approved for clinical use (Supporting Information Ta-
ble  S4).  By  combining  the  specificity  of  antibodies  with  the  high
potency  of  cytotoxins,  ADCs  can  be  effectively  applied  to  treat
various diseases, particularly cancer.

The development of ADCs meets significant challenges due to
the required combination of  tumor antigens, antibodies,  linkers,
and  cytotoxins  379.  Firstly,  the selected  antigen  must  be   overex-
pressed  on  the  surface  of  target  cells  to  enable  recognition  and
binding  of  ADCs  in  the  systemic  circulation.  Subsequently, ADC-
antigen complexes depend on receptor-mediated endocytosis for
the delivery of cytotoxic drugs into target cells 380. For instance, in
the multicenter phase II trials with GO/Mylotarg®,  Jedema et al.
discovered  that  GO-induced  cell  death  is  partially  CD33-medi-
ated  381,  establishing  a  foundation  for  the  effective  treatment  of
GO tumors.  The surface expression level  of  antigens also plays a
crucial  role  in  ADCs.  Numerous  antigens  targeted  by  approved
ADCs  include  blood  tumor  targets  (CD33,  CD30,  CD22,  and
CD79b) and solid tumor targets (human EGFR-2 (HER2), Nectin-

4, tumor-associated calcium signal transducers 2 (TACSTD2), tis-
sue  factors,  and  FRα)  382, 383.  Moreover,  an  ideal  antibody  with  a
strong affinity (KD ≤ 0.1 nmol·L−1) and targeting specificity is es-
sential for ADCs 384. For example, the human/mouse chimeric an-
tibody ch10D7 exhibits a strong affinity for overexpressed CDCP1
in cancer cells. Khan et al. developed ADCs that link the antibody
and cytotoxin MMAE via an enzymatically cleaved linker 385. Fol-
lowing  internalization  by  tumor  cells,  the  ADC-antigen  complex
significantly  inhibited  tumor  cell  gro�wth  385,  386.  Furthermore,
many antibodies in ADCs were derived from highly immunogenic
mice.  To  reduce  immunogenicity  and  extend  plasma  half-life,
modifying  and  adjusting  the  Fc  fragments  of  immunoglobulin  G
(IgG) through antibody engineering is necessary 387. The next gen-
eration of ADCs encompasses chimeric, humanized, and fully hu-
man antibodies.

Linkers  between  drugs  and  antibodies  play  a  critical  role  in
ADCs. Ideal linkers allow ADCs to remain stable in blood circula-
tion and rapidly release APIs upon cell  entry.  Linkers are gener-
ally  categorized  as  cleavable  or  non-cleavable.  The  cleavable
linker responds to physiological and environmental stimuli with-
in  the  cell,  including  enzymes  and  acid.  The  non-cleaved  linker
forms strong bonds with monoclonal antibodies (mAbs) and un-
dergoes  lysosomal  degradation.  Caculitan  et  al.  investigated  the
impact of the VC(S) linker, cleaved by protease, on ADC efficacy,
demonstrating  cytotoxin  release  through  various  mechanisms
and  inhibition  of  cathepsin  B  expression  388.  Drug  selection  in
ADCs is  based on disease type and therapeutic mechanism, with
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Fig. 3   The generation and application of nanobody. (A) Phage display libraries are used to produce nanobodies. Nanobody generation includes extracting mRNA, reversely
transcribing into cDNA, and inserting plasmid into phage. (B) Nanobodies are used to prepare the functionalized liposomes for the treatment of cancer.
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molecules  required  to  maintain  antibody  biological  activity  and
exhibit  high efficacy (IC50 within 0.01−0.1 nmol·L

−1) 384. Further-
more,  immune stimulatory molecules, such as toll-like receptors
(TLRs)  7/8 or  their  stimulators,  can also  be utilized in  ADC fab-
rication 389, 390. 

7. Challenges of PDN commercialization

Pharmaceutical companies made significant progress in char-
acterizing the physicochemical properties of polymeric drug nan-
oparticles during R&D. Key parameters such as particle  size dis-
tribution,  half-life,  drug  loading  efficiency,  in  vitro  dissolution
rates,  and  in  vivo  biodistribution  have  been  extensively  stud-
ied 391. These efforts are enhanced by integrating data from pro-
teomics, metabolomics, and epigenetics, which together contrib-
ute to the development of a sophisticated Big Data framework for
evaluating PDNs 263, 264.  Leveraging this Big Data approach, phar-
maceutical  stakeholders  can  predict  the  clinical  and  commercial
viability of PDN formulations, assess profit margins, and address
critical  considerations  like  reproducibility,  technical  feasibility,
and the financial demands of clinical trials and production 392–394.
Although  nanomedicines  are  rapidly  developing,  commercializ-
ing PDNs  remains  a  significant  challenge.  The  process  of   licens-
ing novel PDN technologies and patents to established or startup
companies  is  particularly  difficult  due  to  the  high  development
costs and regulatory complexities 395. The increasing costs of de-
velopment  hinder  the  approval  process  for  the  production  and

marketing of PDNs 395-398. 

7.1. From the lab to market

The  progression  from  laboratory  discovery  to  commercially
viable  PDN  products  remains  an  arduous  and  complex  process.
Despite the extensive research on PDNs reported in academic lit-
erature, only a small fraction have successfully transitioned to the
commercial market, primarily due to the prohibitive costs associ-
ated  with  their  development  and  manufacturing  399,  400. To   ad-
dress these challenges,  the pharmaceutical  industry must  imple-
ment advanced manufacturing technologies capable of mass-pro-
ducing PDNs at reduced expenses 401. A critical reevaluation of the
pharmaceutical industry’s role and contribution to PDN develop-
ment is  essential  for  bridging  the  gap between research  innova-
tion and large-scale commercial production 115. 

7.1.1. Supervision of the production line
Mass  production  methods  that  satisfy  regulatory  standards

while maintaining low costs are critical for pharmaceutical manu-
facturing 402. Reports suggest that the costs of goods sold consti-
tute 20%−25% of total sales 401.  �Rosenberg  further proposes that
the development  of  manufacturing  techniques  and  clinical   pro-
duction  expenses  collectively  account  for  40%−60%  of  the  total
development costs 401, 403.

There is a pressing need to design and develop a more ration-
al  manufacturing  facility,  encompassing  production  equipment,
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Fig. 4   The internalized and non-internalized mechanisms of ADCs. (A) Internalized ADC. ADC binds to the surface antigen and undergoes internalization, followed by lyso-
somal capture and degradation to release the cytotoxic payload. The released cytotoxin then interacts with its intracellular target or DNA, inducing apoptosis. (B) Non-in-
ternalized ADCs. ADCs release payloads in response to the TME, which subsequently enter cancer cells by diffusion and interact with DNA.
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environmental control systems, and personnel 404. Increased cap-
ital investment is crucial for quality and risk management in the
production  process,  including  induced  crystallization,  solvent
evaporation, plasmid transfection, and antibody screening. Addi-
tionally,  numerous  databases  containing  clinical  and  marketing
information are undergoing refinement and development, aiding
investors  in  evaluating  market  potential  and  profit  scale  405.
Streamlined and secure production lines are vital for the pharma-
ceutical  industry.  Advanced  manufacturing  techniques  enhance
production  efficiency  and  reduce  costs  associated  with  energy,
raw materials, and labor. 

7.1.2. Dimension control
Particle size and distribution are determined by the inherent

properties  of  drugs  and the  production process  406. At  the  nano-
scale, any deviation may alter the in vivo behavior of the product,
particularly for smaller particles 407.  Top-down methods, such as
wet  milling,  are  commonly  employed  in  industry  to  reduce
particle size to the nanometer range. However, this process often
necessitates extended processing times and may introduce metal
residues  408.  In  contrast,  nanoprecipitation,  a  bottom-up  ap-
proach,  can make nanoparticles  with a  narrow size  distribution,
simple  operation,  and  minimal  equipment  requirements.  This
technique  has  the  potential  to  produce  nanoparticles  with  sizes
below  100  nm,  which  exhibit  enhanced  penetration  into  biofi-
lms 409, 410. Nevertheless, the solute may undergo further precipit-
ation during the removal  of  the organic  solvent� 408.  Additionally,
the selection and disposal of organic solvents are critical consid-
erations in this process.

The characterization of  PDNs necessitates the establishment
of  rigorous  scientific  methods  and  techniques.  Light  scattering
technology  provides  a  means  to  measure  particle  sizes  and  zeta
potential  without  yielding  morphological  information  411,  412.  In
contrast,  imaging  techniques,  such as  scanning  electron   micro-
scopy  (SEM),  transmission  electron  microscopy  (TEM),  and
atomic  force  microscopy  (AFM),  enable  the  acquisition  of  data
pertaining to the morphology, surface properties, and other char-
acteristics of PDNs. However, these imaging methods are time-in-
tensive  and  require  the  sample  to  be  dry,  clean,  and  conduc-
tive  106.  Furthermore,  the number  of  samples  that  can  be   ob-
served is  limited 107. The integration of  light  scattering and elec-
tron microscopy  is  widely  accepted  as  a  comprehensive   ap-
proach to measuring the size and morphology of PDNs 30. 

7.2. From the lab to the patient’s bedside

The annual  approval  rate  of  PDNs  is  disproportionately  low
compared to the extensive patent filings. Furthermore, preclinic-
al  efficacy  findings  for  numerous  PDNs  demonstrate  significant
discrepancies  from  clinical  outcomes,  occasionally yielding   ad-
verse  results.  To  effectively  address  these  challenges,  a compre-
hensive and profound understanding of the interactions between
PDNs  and  biological  systems,  the pathological  mechanisms   un-
derlying complex diseases (particularly cancer), and relevant eth-
ical considerations is imperative 413. 

7.2.1. Nanotoxicity
The examination of drug safety and toxicity remains a crucial

focus within the pharmaceutical industry. Approximately 20% of
nanoparticle failures in clinical trials are attributed to safety con-
cerns 414.  During the decades of  rapid development in PDNs, sci-
entists  have  made  notable  advancements  in  safety  research  and
the field of nanoparticle toxicology. However, persistent safety is-
sues continue to hinder the transition from laboratory to clinical
application  75.  Certain  unique  properties  of  PDNs  can  contribute
to  toxicity.  For  instance,  rod-shaped  drug  nanoparticles  exhibit
prolonged  retention  times  in  systemic  circulation  compared  to

spherical  drug  nanoparticles  149,  415,  416.  Furthermore,  the  surface
charge of  PDNs  influences  their  pharmacokinetic  profile.   Posit-
ively  charged  clarithromycin  nanocrystals,  for  example,  demon-
strated enhanced mucosal adhesion compared to uncharged and
negatively  charged  nanocrystals  417.  In  single-layer  CaCO-2  cells,
the charged  nanocrystals  exhibited  superior  drug  transport  effi-
ciency  compared  to  uncharged  nanocrystals.  Additionally,  the
toxicity of PDNs is dependent on the route of administration and
sites  of  accumulation.  Inhaled  PDNs  may  deposit  in  the  trachea
and  alveoli,  potentially  leading  to  inflammation,  fibrosis,  cyst
formation,  and  necrosis.  Following  intravenous  injection,  PDNs
may  form  protein  coronas,  which  alter  their  surface  properties
and influence their in vivo behavior 418, 419. 

7.2.2. Limited understanding of disease pathology
Considering the potential  benefits  of  PDNs to the social  eco-

nomy,  nanomedicine  is  vital  in  the  successful  transformation
from laboratory to product  to  solve human health problems, es-
pecially in oncology 420. Cancer is one of the most complex and dy-
namic  human  diseases,  as its  occurrence  and  development   de-
pend  on  numerous  variables  421.  When  the  DNA  sequence  in  a
normal cell mutates, cancer may develop. Sequencing the genom-
ic  DNA  of  cancer  cells  facilitates  the  identification  of  genes  that
drive and inhibit cancer, as well as the understanding of the role
of  mutated genes in the disease 422.  Sequencing also benefits  the
discovery of  oncogene blockers  and the prediction of  cancer  de-
velopment 423, 424. Although gene sequencing technology has made
significant advancements, its cost remains high, and not all genet-
ic mutations have been cataloged. Consequently, obtaining a com-
prehensive genomic  DNA  sequence  that  covers  all  human   can-
cers remains an elusive goal.

In anti-tumor therapy, drug resistance often arises from mul-
tiple  factors,  including  variations  in  drug  targets,  alterations  in
cytopharmacology, and changes in local cancer physiology, either
individually  or  in  combination  425,  426.  Research  on  tumor  drug
resistance  primarily  consists  of  static  biological  investigations.
Due to technological constraints, exposing tumor tissue is neces-
sary, which may pose potential risks to patients and raise ethical
concerns  427.  Furthermore,  the  complex TME plays  a  crucial  role
in  tumor  development,  garnering increasing  attention  from   re-
searchers  428–430.  The  efficacy  of  many  anti-tumor  PDNs  relies
heavily on the EPR effect. For instance, head and neck tumors and
Kaposi’s  sarcoma  exhibit  robust  EPR  effects,  making them   pre-
ferred  treatment  targets  276.  However,  not all  tumor  blood   ves-
sels  are  leaky,  and  the  EPR effect  can  vary  over  time  within  the
same  patient  or  even  within  the  same  tumor  431.  Consequently,
not all anti-tumor PDNs can be successfully translated into clinic-
al practice.

Despite recent advancements, significant knowledge gaps re-
main regarding the evolution of the TME throughout cancer pro-
gression  and  treatment  432.  For  instance,  the  differences  in  TME
composition between various cancer types and the potential reg-
ulatory  role  of  oncogene  mutations  on  TME  composition  are
poorly understood 433.  Additionally,  the biological characteristics
and functions of non-malignant components within the TME war-
rant further investigation 434. Furthermore, the in vivo behavior of
PDNs  is  primarily  studied  in  animal  models,  and their  perform-
ance in human subjects remains largely unexplored 435. The devel-
opment of  comprehensive animal models capable of  profiling all
tumor  types  presents  a  significant  challenge.  Although  several
preclinical and clinical studies investigated the pharmacokinetics
(PK) of nanotherapeutics across different spec�ies 436, 437, there is a
paucity  of  relevant  cross-species  data.  Consequently,  the  safety
and  efficacy  of  PDNs  in  humans  cannot  be  reliably  predicted
based on preclinical animal models 436. 

7.2.3. Ethical supervision
Clinical trials  require  that  investigators  fully  inform   parti-
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cipants or their legal representatives about the study’s objectives,
potential risks, and benefits. However,  issues often arise,  includ-
ing misunderstandings  about  the  experimental  nature  of   treat-
ments,  deliberate  misrepresentation  of  risks,  or  overemphasiz-
ing the potential benefits 438.  A particular challenge with PDNs is
the difficulty of  monitoring long-term toxicity during early-stage
clinical trials (Phases I-III). Once PDN products are on the market,
unanticipated  adverse  effects  or  long-term  side  effects  may
emerge. While the FDA encourages post-market studies to monit-
or such effects, it does not mandate them, which complicates long-
term safety evaluations. Another significant challenge is the high
cost  of  PDNs  upon  market  entry,  driven  by  the  need  to  recover
R&D  investments  and  protect  intellectual  property.  These  high
prices  often  result  in  healthcare  inequities,  as  only  those  with
greater financial means can afford these cutting-edge treatments,
creating increased pressure on public health systems 439. A critic-
al  ethical  issue  related  to  PDNs  is  the  growing  debate  over  "en-
hancement" versus "treatment" 440. While PDNs are developed for
therapeutic purposes, they also hold the potential to enhance hu-
man  capabilities  beyond  the  treatment  of  disease,  blurring  the
line  between medicine  and enhancement  440.  The accessibility  of
these  enhancements  is  often  dictated  by  wealth,  allowing  more
affluent individuals  to  gain  competitive  advantages  that  are   un-
available to those with fewer resources. This imbalance not only
raises  questions  about  fairness  but  also  risks  creating  a  societal
divide,  where access  to  medical  advancements  reinforces   exist-
ing inequalities and threatens social stability 441. 

8. Summary and Prospect

PDNs have been extensively employed in the diagnosis, pre-
vention,  and  treatment  of  diseases.  Furthermore,  novel  PDN
products, developed through innovative technologies and creativ-
ity,  are currently  undergoing  preclinical  and  clinical   investiga-
tions.  Drug  nanocrystals,  nanobodies,  and ADCs  are  notable   ex-
amples of PDNs. Drug nanocrystals with specific size and surface
properties demonstrate greater potential  for  delivering substan-
tial quantities of insoluble drugs to targeted sites within living or-
ganisms.  However,  the  in  vivo  fate  of  drug nanocrystals  remains
unclear. The in vitro dissolution tests inadequately simulate the in
vivo  environment.  For  instance, AZ68 nanocrystals  exhibited  re-
duced solubility and dissolution rate compared to their amorph-
ous  nanosuspensions  119, 442.  Nevertheless,  following  intravenous
administration,  they  displayed  similar  PK  performance.  More-
over, according to the mononuclear phagocytic system hypothes-
is,  drug  nanocrystals  with  small  particle  sizes  dissolved  rapidly.
Drug  nanocrystals  with  larger  sizes  and  specific  shapes  were
transported by macrophages into the liver. After intravenous ad-
ministration, the transport of drug nanocrystals to the tumor site
may  pose  a  significant  challenge.  Stabilizers  were  highly  diluted
or formed protein corona in blood circulation, potentially weak-
ening the targeted ability of drug nanocrystals. Additionally, util-
izing standard top-down processes to reduce particle sizes below
100  nm  presents  a  considerable  challenge.  DDCs  enhanced  the
physicochemical properties of drugs, including mechanical prop-
erties, hygroscopicity, stability, dissolution rate, and bioavailabil-
ity.  Particularly  for  DDCs,  the  conformers  possessed  their  own
pharmacological activity. The interaction between drugs and con-
formers complicated the study of the correlation between in vitro
properties and  in vivo responses.  For example, compared to free
GA,  supramolecular  GA-glutamic acid cocrystals  exhibit  stronger
binding to α-glucosidase 443, 444.  For DDCs, the study of transport,
distribution,  and  metabolism  is  often  limited  to  free  drugs.  The
conformers frequently possess pharmacological activity and may
cause adverse effects. Furthermore, during cocrystal preparation,
contact with solvent leads to dissociation, crystal transformation,
and stoichiometric  changes.  This  imposes  stringent   require-

ments on scale-up techniques and the production of DDCs.
SAPDNPs,  representing  the  next  generation  of  PDNs,  have

garnered increasing attention. Primarily prepared through nano-
precipitation, SAPDNPs present  challenges  for  large-scale  indus-
trial  production.  By  incorporating  functional  molecules  such  as
fatty  acids, polymers,  cytotoxins, photothermic  agents, and pep-
tides,  SAPDNPs  achieved  targeted  drug  release  and  synergistic
therapy. Although  SAPDNPs  demonstrate  great  potential  in   can-
cer treatment, their exploration of other disease applications re-
mains  limited.  Research  on  SAPDNPs  has  primarily  focused  on
therapeutic  effects,  with  minimal  discussion  of  their  assembly
mechanisms,  hindering  the  development  of  suitable  tools  for
screening optimal SAPDNP formulations. Furthermore, the lack of
in vivo pharmacokinetic and toxicological data impeded their clin-
ical application and commercialization.

ADCs have achieved remarkable success in oncology therapy,
continuing to excite investors. However, selecting and optimizing
ADC  modules,  including  targets,  payloads,  antibodies,  and  junc-
tions, is a complex and challenging process. Pharmaceutical com-
panies must also develop new modules beyond their existing pat-
ents,  involving  multiple  production  steps  that  lead  to  increased
complexity and costs. Nanobodies are expected to be an excellent
tool  in  tumor  treatment  and  diagnosis,  but  their  application  in
other diseases requires further exploration. Moreover, faster and
simpler  production  techniques  are  needed  to  meet  society’s  de-
mand for nanobodies.

In summary, SDNCs are highly effective in enhancing the sol-
ubility  of  poorly  soluble  drugs,  offering  significant  advantages
such as well-established manufacturing technology and support-
ive regulatory policies.  DDCs are frequently  employed as  a  com-
bination therapy approach, substantially improving drug efficacy
while  minimizing  side  effects.  DDCs  are  also  extensively  utilized
to  enhance the  oral  bioavailability  of  insoluble  drugs.  Moreover,
SAPDNPs  enable  the  co-delivery of  multiple  drugs  without  crys-
tal  formation,  exhibiting remarkable  synergistic  therapeutic   be-
nefits for cancer treatment.  Compared to ADCs, nanobodies pos-
sess  unique  characteristics,  including  small  size,  high  stability,
high specificity, and low immunogenicity, making them favorable
for  targeted  therapy  and  in  vivo imaging.  However,  the  limited
utilization  of  nanobodies  as  therapeutic  agents  against  diseases
may be  attributed  to  the  scarcity  of  preclinical  and  clinical   re-
search  and  the  absence  of  large-scale  production  capabilities.  In
contrast, ADCs demonstrate promising potential for cancer treat-
ment, as the payloads in ADCs exhibit superior tumor cell-killing
efficacy  compared  to  nanobodies.  The  cleavable  conjugates  can
more effectively respond to the pathological characteristics of tu-
mors and facilitate payload accumulation at the tumor site.  Nev-
ertheless, numerous ADC resistance mechanisms are being iden-
tified, and bispecific ADCs designed to overcome drug resistance
have not yet achieved clinical application. 
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tial scanning calorimetry; ICH, International Council for Harmon-
isation of  Technical  Requirements  for  Pharmaceuticals  for   Hu-
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succinate;  PVP,  polyethylpyrrolidone;  PTX,  paclitaxel;  HPMC,
hypromellose;  MC, methylcellulose;  HEC, hydroxyethyl cellulose;
HPC,  hydroxypropyl  cellulose;  CMC-Na,  carboxymethylcellulose
sodium; ζ, Zeta potential;  AUC, area under curve; TJs,  tight  junc-
tions;  TEM,  transmission  electron  microscopy;  DMY,  di-
hydromyricetin;  TMZ,  temozolomide;  LVFX,  levofloxacin;  CSP,
crystal  structure  prediction;  MEPSE, molecular electrostatic   po-
tential  surface  energy;  HSP,  Hansen  solubility  parameter;  PD,
Parkinson’s disease; QC, Quercetin; PEG, polyethylene glycol; OA,
osteoarthritis; GA, gallic acid; BBR, berberine; QSNAP, quantitat-
ive  structure-nanoparticle  assembly  prediction;  HCPT,  hy-
droxycamptothecin;  IDM,  indomethacin;  AAO,  anodized  alumin-
um  oxide;  PDT,  photodynamic  therapy;  PA,  photoacoustic;  CPT,
camptothecin; TME, tumor microenvironment; DDSs, drug deliv-
ery  systems;  siRNA,  Small  interfering  RNA;  VHH,  variable  anti-
genic-binding domain; ELISA, enzyme linked immunosorbent as-
say; EGFR, epidermal growth factor receptor; ATP, adenosine tri-
phosphate;  P-gp,  P-glycoprotein;  SARS-CoV-2,  severe acute   res-
piratory syndrome coronavirus 2; PD-L1, programmed cell death
ligand 1; HER2, human epidermal growth factor receptor-2; TAC-
STD2,  tumor-associated  calcium signal  transducers  2;  frα,  folate
receptor  α;  IgG,  immunoglobulin  G;  SEM,  scanning electron  mi-
croscopy; AFM, atomic force microscopy. 
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