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ARTICLE INFO ABSTRACT

Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), in-
cluding macromolecules, biological compounds, and functional components. They overcome
research barriers and conversion thresholds associated with nanocarriers, offering advant-
ages such as high drug loading capacity, synergistic treatment effects, and environmentally
friendly production methods. This review provides a comprehensive overview of the latest
advancements in PDNs, focusing on their essential components, design theories, and manu-
facturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thor-
oughly analyzed to gain an in-depth understanding of their systematic characteristics. The re-
view introduces currently approved PDN products and further explores the opportunities and
challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug
cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the success-
ful commercialization and widespread utilization of PDNs across various disease domains.
Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require
extensive translational research. Challenges persist in transitioning from laboratory-scale
production to mass manufacturing and overcoming the conversion threshold from laboratory
findings to clinical applications.
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targeted therapy, biodistribution, and lesion accumulation ',

This approach represents a promising strategy for cancer treat-
ment. PDNs passively target and accumulate at tumor sites based

1. Introduction

Pure drug nanomedicines (PDNs) emerged as a promising

field of theranostics, integrating diverse disciplines such as phys-
ics, mathematics, materials science, pharmacy, chemistry, bio-
logy, and engineering '*. Drug delivery represents the most pre-
valent application of nanomedicines, accounting for 78% of glob-
al sales and 58% of patent applications > °. Among the various
types of nanomedicines approved by the U.S. Food and Drug Ad-
ministration (FDA), lipid-based nanoparticles, particularly lipo-
somes, are the most common, followed by micelles (primarily
polymer-based) and nanocrystals "~**. However, liposomes and
polymer-based nanomicelles face potential limitations, including
relatively low drug loading capacity, high production costs, and
diffcuclty of mass production ' ", In contrast, PDNs offer the
general advantages of nanomedicines, such as specific loading
capabilities, high therapeutic efficacy, and targeted delivery. Ad-
ditionally, PDNs circumvent issues are associated with immuno-
toxicity, low loading capacity caused by carriers, and high costs,
and facilitate industrial production '*"’

Published scientific articles related to PDNs have explored
various therapeutic applications, including cancer, infection,
autoimmune diseases, inflammation, and others '**". Convention-
al chemotherapy is restricted by toxicity and drug resistance, but
PDNs regulate the balance between efficacy and toxicity through

* Corresponding author.
E-mail address: weihe@cpu.edu.cn
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on the enhanced permeability and retention (EPR) effect. Surface
stabilizers can promote active tumor accumulation or uptake as
targeted or internalized functionalized ligands, respectively *.
Notably, PDNs modified with target ligands such as antibodies,
nucleic acid ligands, and ligand peptides are expected to increase
drug accumulation and overcome drug resistance ****°. The ad-
ministration of PDNs is no longer limited to intravenous routes,
that can implement systemic or local treatment via the gut, eyes,
skin, and other routes. For instance, Wang et al. prepared oral 10-
hydroxycamptothecin (HCT) nanocrystals with a size of approx-
imately 190 nm using precipitation *°. In vitro release experi-
ments revealed that the drug release at 72 h was 2.5 times higher
than that of bulk HCT. Pharmacokinetic data in rats demon-
strated that the oral bioavailability of HCT nanocrystals was 8.6
times higher than that of active pharmaceutical ingredients
(APIs) “*°. These results indicate that nanocrystal technology can
significantly improve solubility and oral bioavailability while pre-
serving the lactone structure of camptothecin. In ocular drug de-
livery, nanocrystal technology enhances drug solubility, creating
a concentration gradient that enables the drug to pass through
the physiological barriers of the eye and rapidly release .
Paredes et al. prepared dapsone nanocrystals using the media
milling technique *. Compared to raw dapsone, dapsone nano-
crystals exhibited a 3.32-fold improvement in water solubility at
pH 4.5. Nanocrystals with a large specific surface area may in-
crease the retention time in the mucosa and exhibit prolonged-re-

Copyright © 2025, China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
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lease behavior in the eye *’. For example, econazole nitrate nano-
crystal suspension was prepared by spray drying *’. The maxim-
um concentration of econazole nitrate nanocrystal in tears was
2.3 times higher than that of the bulk drug, as the chitosan in the
suspension increased the wettability of the nanocrystals. Further-
more, the viscosity and positive charge of chitosan increased the
retention time of the nanocrystals in the eye.

In the industrial production of PDNs, the management and
control of quality parameters, including size, distribution, shape,
and formulation information, are crucial. A combination of tech-
niques or innovative approaches is commenly recommended for
laboratory production *. For instance, Koseki et al. employed an
ultrasound-assisted reprecipitation method to prepare rod-like
SN-38 nanocrystals *'. Furthermore, the preparation methods for
self-assembled pure nanomedicines, such as the template-as-
sisted method, dialysis method, film dispersion, and in vivo self-
assembly method, are more straightforward ****. For industrial
production, conventional and mature manufacturing techniques
are preferred over new or combined technologies. The carrier-
free nature of PDNs allows for the use of traditional and straight-
forward processes. This review introduces the approved PDN
products, including self-dispersible nanocrystals (SDNCs), drug-
drug cocrystals (DDCs), and active-targeted PDNs, such as anti-
body-drug conjugates (ADCs) and nanobodies. They all have ap-
propriate technologies for large-scale industrial production. The
opportunities and challenges for promoting PDN application are
then discussed.

2. Definition and Characteristics of PDNs

PDNs integrating nanotechonlogy and biomedicine, are free-
carrier nanostructures composed entirely of drug molecules *°.
The nanoscale effect of PDNs also enhances the solubility of insol-
uble drugs. In contrast to carrier-based nanoparticles, PDNs ex-
hibit a high drug-loading capacity (up to 100%) and efficiency
while avoiding the immunotoxicity associated with nanomaterial
carriers. The design of molecular structural units fundamentally
regulates the structural characteristics and physicochemical
properties of PDNs *’. Furthermore, the drug loading sequence
can modulate the release rate and sequence of PDNs ***°, influen-
cing the drug therapeutic index. Molecular self-assembly and nan-
oprecipitation are common techniques employed to transform
dispersed drug molecules into nanosized aggregates *’. Various
factors drive the formation of PDNs, including intermolecular
forces (such as hydrogen bonding, electrostatic interactions, and
m-1 stacking), environmental conditions (e.g., pH, temperature,
and ionic strength), and process parameters (grinding, stirring,
and mixing) .

Although polymer micelles or liposomes protect drugs from
the external environment, their loading capactiy is typically less
than 10%, often increasing pharmaceutical costs ****. In contrast
to other delivery systems, such as liposomes, micelles, and exo-
somes, PDNs typically comprise APIs without carriers. Drug ad-
sorbed on a carrier has the potential for desorption in non-target
sites, precluding the achievement of the ideal therapeutic effect.
Under the protection of lattice energy, drug nanocrystals exhibit
high drug loading and low desorption rates *’. In vitro release ex-
periments demonstrated that the drug loading of mitoxantrone
nanocrystals (approximately 100%) was approximately 12 times
that of mitoxantrone liposomes **°'. Simultaneously, PDNs can
achieve the clinical therapeutic effect with low doses and high ef-
ficacy. PDNs can reduce the administration frequency and im-
prove patient compliance while also avoiding the risk of multiple
drug resistance and toxic side effects associated with multiple
high-dose medications.

2.1. High drug solubility

Solubility represents a critical parameter for drug delivery
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systems (DDSs) **. Low solubility poses a significant challenge to
a drug’s bioavailability. Following oral administration, drugs with
limited saturation solubility in body fluids often exhibit reduced
oral bioavailability ** **. Similarly, in intravenous delivery, poor
solubility frequently necessitates low drug doses and large
solvent volumes, thereby increasing the risks of toxicity and ad-
verse effects. Consequently, improving dissolution and bioavail-
ability is a crucial consideration when designing preparations for
insoluble drugs *°. Prodrugs, for instance, demonstrate promise
in elevating solubility by bonding hydrophilic groups to hydro-
phobic drugs, thereby enhancing bioavailability °> *’. However,
supplementary studies on the physical and chemical properties,
as well as the in vivo behaviors of prodrugs, are inevitable **. This
strategy is not dominant, considering the shortened time and cost
of research and development (R&D), and the extended duration
of patent protection. Nanosizing, the reduction of particle size to
the nanometer level, significantly increases the surface-to-
volume ratio and greatly improves the bioavailability of insol-
uble drugs. It is an effective, economical, and universal strategy
for insoluble drugs. According to the Noyes-Whitney equation,
nanosizing accelerates the dissolution rate and increases satura-
tion solubility °**’. The Calvin equation demonstrates that dissol-
ution pressure increases as particle size decreases. Nanoparticles
obtain significant solution pressure, shifting the equilibrium to-
ward dissolution °'. For instance, a baicalein nanocrystal pre-
pared using the high-pressure homogenization method (HPH)
with poloxamer 188 as a stabilizer displayed a 2.01-fold increase
in dissolution profiles compared to raw baicalein *’. This sug-
gests that the saturated solubility and dissolution rate of insol-
uble drugs in body fluids are accelerated. The vast specific sur-
face area increases the residence time and adsorption of drugs in
the intestinal mucosa, resulting in improved intestinal absorp-
tion *. Furthermore, increased saturation solubility creates a
more significant concentration gradient for penetration into the
skin membrane, enhancing passive diffusion °‘. Additionally,
Shen et al. prepared quercetin (QC) hybrid nanocrystals with dia-
meters around 280 nm and 550 nm *°. Following intravenous ad-
ministration, the fluorescence intensity of 280 nm hybrid nano-
crystals in blood was stronger than that of 550 nm nanocrystals
within 30 hours. These results indicate that nanocrystals with
smaller particle sizes may dissolve faster. In intravenous injec-
tion, the risk of capillary blockage at the micron level is avoided.
The unique functional groups in drugs diversify their surface
properties, facilitating recognition or ingestion by tissues in the
body with continuous or rapid release.

2.2. Hypotoxicity

Safety and toxicity are the primary concerns and the most
crucial data for new drug registration. Insoluble drug formula-
tions frequently contain numerous excipients, such as cosolvents
and solubilizers, which may precipitate in non-aqueous solutions
like blood ®, potentially leading to safety issues. In contrast,
PDNs exhibit high solubility without additional excipients, mitig-
ating these concerns.

The advancement of nanomedicine led to the utilization of
various nanomaterials, such as polymer nanoparticles and lipo-
somes, in DDSs “”*°. However, in toxicity studies, researchers of-
ten focus on the toxicity of the entire preparation, neglecting the
effects of individual nanoparticles. It is important to note that the
toxicity profiles of nanoparticles and nanomaterials are disti-
nct *. Consequently, the toxicity of nanoparticles, particularly
slow- or non-degradable particles, warrants significant attent-
ion """, For instance, researchers reported that acid-functional-
ized single-walled carbon nanotubes, when phagocytosed by
macrophages, impaired mitochondrial function and inhibited
phagocytic activity "*. Furthermore, the toxicity of nanoparticles



Y. Lai etal.

is dependent on the potential exposure routes in humans. The
respiratory system serves as the primary entry point for air-
borne particles. Yang et al. investigated the association between
chronic obstructive pulmonary disease and polystyrene nano-
plastics "*. Their findings revealed that nanoplastics in the lungs
induced oxidative stress and inflammatory responses, and poly-
styrene nanoplastics traversed the alveolus-blood barrier, enter-
ing the bloodstream.

The toxicity of drugs is profoundly influenced by the admin-
istered dose and frequency "*. With nanotoxicology advancing, re-
searchers evaluated how nanomaterial properities impact their in
vivo toxicology, such as shape, charge, pH, and size "> ’°. For in-
stance, direct genotoxicity was detected in 20% of evaluated gen-
otoxicity tests for metal-containing nanoparticles and up to 70%
for nanofibers ”’. In comparison, carbon-based nanoparticles gen-
erated higher levels of reactive oxygen species (ROS) than mi-
cron particles "*. This may be attributed to the larger specific sur-
face area of nanoparticles, which provides a greater reaction sur-
face. Moreover, when ovarian granulosa cells were incubated
with 10 nm diameter gold nanoparticles (AuNP) for 24 h, the gold
nanoparticles significantly infiltrated or damaged the mitochon-
dria ”°. To ensure nanoparticles do not produce unintended ef-
fects, in vivo toxicology should be investigated during the design

and modification process *.

2.3. Stability

The long-term stability of drugs is a key parameter for qual-
ity assurance and plays a crucial role in the manufacturing pro-
cess. Ensuring the safety and efficacy of drugs during storage and
transportation is crucial. However, the nanosize effect presents
challenges for the physical stability of nanoproducts. According to
the Ostwald ripening effect, in a highly dispersed system, the sat-
urated solubility of small particles is higher than that of large
particles “" *’. In a study, Zhang et al. explored the addition of
small nanoparticles to regulate the growth of larger
particles, achieving product size and shape uniformity
PDNs with extensive interfacial areas are thermodynamically un-
stable systems susceptible to aggregation and precipitation to re-
duce Gibbs free energy *. When PDNs have poor physical stabil-
ity, the nanosize effect may no longer exist, resulting in sediment-
ation, aggregation, crystal growth, recrystallization, and even
toxic side effects after medication. The Zeta potential () can in-
duce crystal aggregation or growth, affecting the absorption pro-
cess in vivo and leading to lower drug therapeutic effects. Physic-
al stability also affects the system’s fluidity and compressibility,
adversely impacting the R&D of PDN preparations.

PDNs are primarily stored and transported in aqueous sus-
pension. The type, volume, and temperature of the solvent and
excipient significantly influence the physical stability of the nano-
particles. For instance, in a study by Nowak et al., silver nano-
particles were coated with different stabilizers, including naprox-
en, diclofenac, and 5-chlorosalicylic acid *. After 30 days, the sil-
ver nanoparticles coated with naproxen exhibited a more pro-
nounced increase in size compared to the other stabilizers. To
mitigate the Ostwald ripening effect, the solvent should not dis-
solve the drug but should have good solubility for the exci-
pient *,

Chemical and optical stability represent critical factors, par-
ticularly for drugs sensitive to light, heat, and humidity. Some
drug nanoparticles are dispersed in aqueous media, where hy-
drolysis and oxidation can produce unpredictable effects. The sta-
bilizer molecules covering the nanoparticle surface protect the in-
ternal compounds from oxygen and light *. For instance,
omeprazole, a poorly soluble compound that degrades rapidly in
water-based media, was formulated as a nanosuspension by
Moéschwitzer et al. . Its content remained relatively stable for

nano-
83
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one month, suggesting that the surface stabilizer and crystal
structure may have shielded omeprazole from decomposition.

3. Commercialization and regulation of PDNs

3.1. Approved PDNs for the clinic

Nanomedicines frequently offer significant social and eco-
nomic advantages. Over the past two decades, the FDA and
European Medicines Agency (EMA) have approved approxim-
ately 80 drugs and medical device products related to nanomedi-
cine for commercialization *. As the market expands and
nanomedicine rapidly develops,
nanomedicine products is expected to further increase. By 2025,
the protein-based nanomedicine market in cancer, inflammation,
and the central nervous system (CNS) is estimated to reach $28 +
14 billion *, The nucleic acid-based market will reach $14 7 bil-
lion, and the small molecule-based market will reach $6 + 3 bil-
lion . Among the numerous nanomedicine products, PDNs are
easily convertible. Drug nanocrystal products accounted for
about 30% of all nanodrug products submitted to the FDA *°. Des-
pite the outbreak of the coronavirus disease 2019 (COVID-19)
crisis and subsequent economic recession in 2020, the drug
nanocrystals market is projected to reach $83.1 billion *
Moreover, biotechnology consistently generates profits, and the
global nanomedicine market is remarkably vast. These factors
have propelled the pharmaceutical industry towards the R&D of
biological nanomedicine products. For instance, Ablynx de-
veloped the first nanobody drug, Caplacizumab, which is used to
treat acquired thrombotic thrombocytopenic purpura °*. The first
marketing approval has the potential to significantly alter the bio-
medical and economic landscape of nanobodies, establishing a
foundation for nanobodies to become mainstream biological PDN
products. Currently, 14 ADCs have been marketed *°, and more
than 100 ADC candidates are currently in clinical studies *. By
2026, global sales of marketed ADCs are anticipated to surpass
$16.4 billion **, with Trastuzumab deruxtecan leading the way.
Its global sales are estimated to reach $6.2 billion in 2026, posi-
tioning it as the best-selling ADC **. It is envisioned that PDNs will
yield substantial market benefits and continue to attract the in-
terest of academic personnel and investors.

the number of approved

3.2. Technical barriers

Securing patent protection from the United States Patent and
Trademark Office (PTO) is economically critical for basic re-
search and commercial product development . During the "pat-
ent cliff" period, pharmaceutical companies face urgent pressure
to develop and launch novel products. PDNs have garnered in-
creasing attention from the pharmaceutical industry. Compared
to conventional drugs, the complex nature and specialized know-
ledge involved in PDNs provide a competitive edge in the market,
restricting generic alternatives and mitigating the revenue de-
cline associated with the "patent cliff" *.

Approximately 30% of all nanomedicine patent applications
are related to drug nanocrystals *’. These nanocrystals can be ad-
ministered through various routes, such as oral, intravenous, and
subcutaneous, and applied in different therapeutic areas, includ-
ing anti-infection (26%), anticancer (24%), anti-anorexia (11%),
and anti-inflammatory (11%) “. ADCs present significant chal-
lenges and stringent requirements in terms of technology and
production for intellectual property protection. However, they
also offer greater opportunities for extending patent life and re-
ducing the likelihood of patent breakthroughs. ADCs integrate
multiple components, such as the target, antibody, linker, and
toxin. Antibody patents and regulations do not fully apply to
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ADCs, making the identification of novel antibodies, targets, junc-
tions, and toxins challenging. For instance, researchers filed a
patent related to the linker in Trastuzumab deruxtecan ”°, de-
scribing multiple peptide linkers that include the glycine-glycine-
phenylalanine-glycine sequence . Any new component or com-
bination of components (antibody-toxin, antibody-linker, and
linker-toxin) can receive specific patent protection and extend
the market exclusivity period of the corresponding ADCs. In
2012, AstraZeneca acquired the VA-PABC linker developed by
Spirogen ** and promptly filed a patent describing an ADC that
enhances the ability of tesirine to bind to anti-CD19 antibodies.

3.3. Regulatory of PDNs

The rapid advancement of nanomedicines, the urgent de-
mand for related products, and the need for industry progress
have presented numerous challenges to regulatory agencies. The
FDA is required to clarify the PDNs within its jurisdiction, pro-
pose scientifically sound regulatory policies, evaluate appropri-
ate products rationally, and provide technical guidance *. In
2012, the draft industry guidance "Considering Whether an FDA-
Regulated Product Involves an Application of Nanotechnology”
indicated that the FDA had not yet clearly defined nanotechno-
logy. The 2014 industry guidance stated: "whether a material or
end product is designed to possess an external dimension or an
internal or surface structure in at least one nanoscale range (ap-
proximately 1 to 100 nm), or exhibits properties or phenomena,
including physical, chemical, or biological effects, that can be at-
tributed to its size that is even up to 1 um (1000 nm)" °>*”>*", This
signified that the FDA regulated nanotechnology products ac-
cording to specific legal standards and powers. Furthermore, in
2012, the FDA issued two additional draft industry guidelines ad-
dressing nanotechnology issues in cosmetics and food *. The
European Cosmetic Regulation covered insoluble, persistent, or
synthetic nanomaterials in the 1-100 nm size range in cosmetics,
including nanocrystals, liposomes, and nanoemulsions """,

The physicochemical and biological properties of novel and
complex materials are vital for ensuring the reproducibility of the
production process and the anticipated biological effect '’ Their
supervision is essential and indispensable. Currently, a clear
definition of nanomaterials is lacking. Regulatory agencies have
limited experience with emerging nanomaterials, and reliable
data sets for developing regulatory strategies are absent. Further-
more, standard nanomaterials for reference and specific tools for
adequately characterizing fundamental product properties are
unavailable. Experiments conducted without adhering to regula-
tions and guidelines have raised serious concerns about nanoma-
terials. Regulators, the pharmaceutical industry, governments,
and academia are collaborating to develop specific, scientific, and
comprehensive research reports, risk assessments, and guid-
elines for nanomaterials '"*.

Current regulatory guidelines are more favorable for the de-
velopment of PDN products. PDNs offer an optimal alternative
approach, reducing the barriers to commercial translation while
largely circumventing the need for nanocarrier application and
oversight. The US FDA has granted approval to numerous PDN
products, encompassing DDCs, ADCs, and nanobodies.

The supervision of complex nanomedicine products involves
their key characteristics, and products are sampler, so the evalu-
ation becomes easier '”°. The regulatory process for marketed
PDN products is well-established, with numerous available
guidelines, International Organization for Standardization (ISO)
standards, and approved methods and references. Particle size
and distribution, for instance, are critical factors for PDN
products. These parameters can be characterized dynamically or
statically through various imaging or light scattering techniques,
such as dynamic light scattering, laser diffraction, and image ana-
lysis "', The polycrystalline form is another crucial aspect of
drug nanocrystals, as it influences dissolution, stability, and
bioavailability. This property can be determined using X-ray
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powder diffraction (XRPD), differential scanning calorimetry
(DSC), or spectroscopic methods ' '**''°, Product safety is inex-
tricably linked to the guidance provided by regulators and in-
dustry guidelines, which contribute to the improvement of PDN
products by enhancing benefits and mitigating risks *’.

Presently and in the future, regulatory bodies and the phar-
maceutical industry are collaborating to establish a comprehens-
ive regulatory framework through the International Council for
Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH). In 2010, the EMA conducted a scientific
workshop on nanomedicines '''. Participants discussed the ad-
vantages and challenges of nanotechnology in medicine and spe-
cific issues, including the characteristics, biological distribution,
and interactions of nanomedicines with biological systems ', fa-
cilitating the evaluation of future nanomedicines. Concurrently,
major pharmaceutical companies have increased investment in
preclinical and clinical research on PDNs, providing reliable data
and reference materials to inform the development of regulatory
policies.

Comprehensive pharmacoeconomic studies are essential pri-
or to the commercialization of PDNs. The development of a
Health Technology Assessment (HTA) will support the introduc-
tion of PDNs and enhance their clinical application. Furthermore,
it provides regulatory agencies and public health stakeholders
with crucial information regarding the safety, efficacy, and cost-
effectiveness of PDNs > ', To successfully integrate PDNs into
the public health system, interdisciplinary training for research-
ers, healthcare professionals, and public health experts is neces-

sary "%,

4. PDN Types

4.1. SDNCs

SDNCs, primarily consisting of drugs and stabilizers, have re-
cently demonstrated significant potential for disease treatment
applications. Since their invention in the 1970s, nanocrystals
have represented over 20% of nanomaterial-based new drug ap-
plications received by the FDA "*. The formation of SDNCs begins
with the regular arrangement of drug molecules into a crystal
with a specific structure, followed by the adsorption of stabil-
izers (amphiphilic compounds) onto the crystal surface to pre-
vent aggregation. These carrier-free SDNCs can achieve nearly
100% drug loading, resulting in enhanced therapeutic effects at
lower drug doses. The FDA approved Ryanodex® for the treat-
ment of malignant hyperthermia ''°. A single bottle of Ryanodex®
can be dissolved in 5 mL of sterile water within 20 sec and
achieve standard therapeutic effects ''>'*’. In contrast, a bottle of
traditional Dantrium preparation requires 60 mL of sterile water
and takes 8 min to dissolve, with approximately 8-9 bottles
needed to achieve the same therapeutic effect ''*'*",

SDNCs can be prepared using by a variety of methods, includ-
ing bottom-up, top-down, and combination approaches *'"'*".
Currently, the majority of commercially available nanocrystal
suspensions are produced through a top-down approach. Wet
media milling and HPH are the most common technologies in the
pharmaceutical industry. Additionally, combination technologies
such as Nanoedge, Nanopure XP, CAV-Precipitation, and Smart-
Crystal have been developed to meet specific production require-
ments '*°, Manufacturers must determine appropriate fabrication
techniques and adjust process parameters to produce uniform
and high-quality nanocrystals on an industrial scale. Fig. 1 and
Supporting Information Table S1 illustrate the methods used to
fabricate drug nanocrystals.

4.1.1. SDNC fabrication
The preparation and stability of highly stable crystals are
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closely related to the physicochemical properties of drugs **'*°.
Drugs with high hydrophobicity and enthalpy values (or cohesive
energy) have a greater propensity to form stable nanocrystals '*'.
Specifically, drugs with high cohesive energy (8E > 30 kj-g™") are
more likely to produce stable nanocrystals, while those with low
cohesive energy (SE < 25 kj-g™") tend to agglomerate and grow
within nanosuspensions. Furthermore, the addition of solvent or
additive molecules can increase viscosity and suppress diffusion,
thereby altering supersaturation levels and inducing crystalliza-
tion. Previous research from the Weizmann Institute has demon-
strated that adding chiral serine to a solution caused glycine crys-
tals to grow in a pyramid shape rather than the typical bipyr-
amld 132, 133.

The stabilizer plays a pivotal role in maintaining the stability
of SDNCs, with the appropriate type and concentration being key
factors. Stabilizers can be categorized into four groups: ionic sur-
factants, non-ionic surfactants, polymers, and other stabili-
zers "***', The suitable stabilizer and its concentration are essen-
tial to counterbalance the detrimental effect of viscosity. Bernard
et al. classified hypromellose (HPMC), methylcellulose (MC), hy-
droxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), and
carboxymethylcellulose sodium (CMC-Na) as high-viscosity sta-
bilizers, while PVP30, PVP90, and TPGS were identified as low-
viscosity stabilizers '*>'*°, Moreover, the zeta potential () is a de-
terminant of the physical stability of the nanocrystal suspension
system . Findings demonstrated that increasing the molecular
weight and concentration of Poloxamer reduced its { potential
(Poloxamer ¢ (F127) > ¢ (F68)). Notably, a significant decrease in
{ potential was observed with increasing Poloxamer F127 con-
centration /. Furthermore, the behavior of nanoparticles in liv-
ing organisms can be modified by the coated polymers, which of-
fer stabilization, release control, and other functionalities "** '**,
Sharma et al. discovered that combining Poloxamer F68 with a
small quantity of chitosan derivatives enhances the stability of
paclitaxel (PTX) nanocrystals '**. The accumulation of PTX nano-
crystals in Caco-2 cells was higher compared to PTX alone, as
chitosan inhibited P-glycoprotein (P-gp) and reversibly opened
tight cell junctions ',

4.1.2. In vivo fate of SDNCs
Comprehending the fate of SDNCs) within living organisms is
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crucial for their R&D, significantly accelerating the advancement
process. The primary method for obtaining pharmacokinetic and
biodistribution data of SDNCs involves monitoring the in vivo
concentration of free drugs. However, this approach overlooks
the in vivo behavior of intact SDNCs. The release behavior of
SDNCs in physiological in vivo environments differs from in vitro
conditions. The lack of agitation and fluid in vivo likely leads to
slow and persistent release, allowing intact nanocrystals to inter-
act with biological tissues '’. Researchers have proposed that the
in vivo behavior of certain SDNCs may resemble that of nanocarri-
er particles "%

The behavior of SDNCs in living organisms may vary depend-
ing on the route of administration "*’. Studies have shown that
SDNCs dissolve rapidly in gastrointestinal fluid after oral admin-
istration, creating a high concentration gradient. The area under
the curve (AUC) of nimodipine nanocrystals at 12 h post-oral ad-
ministration was 2.5 times higher than that of their solid disper-
sions '*'. Recent findings suggested that intact nanocrystals may
adhere to the gastrointestinal mucosa and subsequently be ab-
sorbed through epithelial transcellular pathways, leading to an
improved oral AUC "%, In contrast, SDNCs do not dissolve imme-
diately following intravenous injection. Smaller nanocrystals are
subject to rapid dissolution due to fluid shear force, while larger
nanocrystals may be engulfed by macrophages, resulting in swift
distribution to the liver and spleen "**'**, Furthermore, nanocrys-
tals with specific shapes have demonstrated enhanced efficiency
or improved biosafety in drug delivery applications '*>'*°. Zhou et
al. developed rod-shaped and spherical pegylated hydroxycamp-
tothecin nanocrystals (HCPT-NRs) with an average diameter of
200 nm . In cellular uptake studies using 4T1 and MCF-7 cells,
rod-shaped hydroxycamptocampine nanocrystals (HCPT-NRs)
exhibited higher uptake efficiency compared to spherical HCPT-
NRs, indicating superior anticancer potential. Similarly, Weiss et
al. prepared both non-functional and functionalized cellulose
nanocrystals (CNCs) "*°. In vivo biocompatibility experiments re-
vealed that charged CNCs are non-immunogenic, while un-
charged CNCs elicited undesirable inflammation at high concen-
trations, leading to tissue damage and disease responses.
Moreover, the dissolution rate, penetration, and uptake effi-
ciency of SDNCs are significantly influenced by their size. Small-
sized curcumin nanocrystals (approximately 240 nm) demon-

Wet ball milling
D
)
Inner fluid 1 Inner fluid 2 Outer fluid
Microfluidics

Fig. 1 Methods used for fabricating SDNCs. (A) The anti-solvent precipitation method mixes the drug solution with the antisolvent, blocks crystal growth, and reduces the
size of drug particles. Ultrasonic sound is used to induce crystallization. (B) Wet ball milling prepared drug nanocrystals by the interaction between milling beads and drug
particles. (C) The spray drying method converts a fluid drug into small droplets through an atomizer, then transforms them into drug particles. (D) Microfluidic technology
manipulates different microchannels and fluid flow speeds to create uniformly size-controlled drug particles.

389



Y. Lai etal.

strated a faster dissolution rate and higher diffusion percentage
in simulated pulmonary mucus compared to large-sized curcumin
nanocrystals (approximately 500 nm) '*°. Additionally, the per-
meability of fenabemide nanocrystals from donor to acceptor
cavities decreased with increasing particle size ''°. The transport
pathways of nanocrystals were different based on their size, as
observed in the larval zebrafish model '’. Nanocrystals measur-
ing 70 nm are internalized into lysosomes and the endoplasmic
reticulum, while 200 nm nanocrystals accumulate more in lyso-
somes. The proteins adsorbed onto nanocrystals with different
stabilizers can change delivery routes, and interactions between
nanocrystals and cell layers. For instance, Qin et al. successfully
employed polyvinylpyrrolidone (PVP) K17, D-a-tocopheryl poly-
ethylene glycol 1000 succinate (TPGS), and poloxamer F68 as sta-
bilizers to develop celecoxib nanocrystals (CXB-NCs) '*’. The peak
concentration of CXB-NCs/TPGS and CXB-NCs/F68 was 5 and 3.5
times higher than that of CXB-NCs/PVP K17, respectively. The
pharmacokinetic curve of CXB-NCs/PVP K17 was significantly
flatter, indicating slower drug release. Tight junctions (TJs)
between cells pose a challenge in delivering drugs to the system-
ic circulation and specific organs. Certain stabilizers can interact
with TJ proteins and regulatory molecules, substantially improv-
ing the delivery efficiency of SDNCs *** ™",

4.1.3. Application of SDNCs

Nanocrystals represent a feasible and practical approach for
delivering APIs through various administration routes. Over 20
nanocrystal-based products have been approved and commer-
cialized, with numerous new products in various stages of clinic-
al research °. Oral administration is the most appropriate and
preferred route, as well as the first choice for product commer-
cialization '*. When exposed to gastric and intestinal fluids,
nanocrystals rapidly dissolve and absorb, improving the total
AUC and reducing the impact of eating or fasting on drug absorp-
tion ', In vitro release tests have demonstrated that ibuprofen
nanocrystals released 90% of the total drug within 1 h, while
pure drugs and commercially available products released only
58% and 63%, respectively '*°. Extracenteral administration, in-
cluding intravenous, intramuscular, and transdermal routes, is
another practical approach that offers higher patient compliance,
avoids first-pass effects, and allows for rapid treatment termina-
tion. Transdermal drug delivery is a typical example **'*% 6% 1%
where drug nanocrystals produce a high drug load in skin fur-
rows and hair follicles, promoting drug penetration through the
skin barrier and maintaining continuous drug release '**'*’. For
instance, studies have shown that nanosuspensions of Aprem-
inast, used for psoriasis treatment, exhibited 2.6- and 3.2-fold
higher penetration rates in the stratum corneum and viable lay-
ers compared to micropowder suspensions '*. Ex-vitro skin pen-
etration studies demonstrated that the dermal deposition of fu-
maric acid (FA) from FA nanocrystals was 2-fold compared to
raw FA. In vivo results exhibited that the in vivo distribution of
nanocrystals was improved, enhancing therapeutic effects com-
pared to the commercially available Fucidin cream '*°. Consider-
ing the high sensitivity of eye tissue, organic solvents, extreme
pH, and complex materials should be avoided. SDNCs can reduce
irritation to the eye, improve solubility, and prolong retention
time ”°. For example, the ophthalmic anti-inflammatory drug flu-
metholone has been formulated into eye drops, and after admin-
istration of nanocrystalline eye drops, the average concentration
of flumetholone in the aqueous humor was 2-3 times higher than
that of microcrystal eye drops within 60 min ",

SDNCs are also employed as a carrier for the delivery of bio-
pharmaceuticals, such as proteins and nucleic acids, enabling
combinatorial therapy. SDNCs consistently exhibit specific mor-
phologies, including rod-like and disk-like shapes *** "** "% Not-
ably, rod-like nanoparticles demonstrate the ability to target the
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pulmonary circulation following intravenous administration'*’.
The research group utilized rod-shaped PTX nanocrystals as car-
riers to develop a pulmonary artery-targeted co-delivery system
of PTX and caspase-3 (Cas-3) for the alleviation of monocrotaline-
induced pulmonary hypertension '*°. The system was fabricated
by loading the protein onto PTX-nanocrystals, followed by a coat-
ing of glucuronic acid (GlcA) for targeting the glucose transporter-
1 (GLUT-1) on pulmonary artery smooth muscle cells (PASMCs).
The findings revealed that nanoparticles with a diameter of 170
nm exhibited prolonged circulation in the blood, accumulation in
the lungs, targeted pulmonary arteries (PAs), induced regression
of PA remodeling, and improved hemodynamics, resulting in de-
creased pulmonary arterial pressure and Fulton’s index (Fig. 2).

4.2. DDCs

DDCs are composed of two or more distinct drug molecules
within a single crystalline lattice, maintained in specific stoi-
chiometric ratios through non-covalent interactions '”*. This ap-
proach offers a cost-effective strategy by reducing production ex-
penses and facilitating the development of novel drug combina-
tions. Notably, DDCs enable the systematic enhancement of drug
properties without altering their core chemical structures, which
has garnered considerable attention in the field of pharmaceutic-
al eutectics.

In recent decades, the FDA has approved and successfully
commercialized various DDC products. Furthermore, preclinical
and clinical research on DDCs has received increased incentives,
leading to a substantial rise in capital investment from research-
ers and companies (Supporting Information Table $3) 7*"%, Ad-
ditionally, the rising number of DDC patents granted by the
European and US patent offices reflects a growing interest in ad-
vancing technologies for more complex and efficient DDC formu-
lations '7*

4.2.1. Distinctiveness of DDCs

DDCs are a distinctive solid-state form derived from the
modification of the physicochemical properties of drug mo-
lecules. This is achieved by altering the molecular arrangement
and intermolecular interactions within a shared crystal lattice.
This novel approach offers the potential to enhance the proper-
ties of one or both drugs without requiring changes to their
chemical structures.
4.2.1.1 Changing the melting point, hygroscopicity, solubility, and
mechanical strength of drug molecules

DDCs can significantly impact key properties such as melting
point, hygroscopicity, solubility, and mechanical strength. Stud-
ies demonstrated that the melting point of a DDC generally was
between those of the individual components *'*°. In cases
where one drug has a particularly high melting point, the DDC
typically exhibits a higher melting point overall. Additionally,
shifts in the molecular packing within the lattice can alter the
mechanical properties of the DDC, affecting parameters such as
tensile strength, breaking force, elasticity, and compressibi-
lity " **. The solubility of a DDC is closely related to the solubil-
ity of the coformer, with the coformer’s characteristics playing a
crucial role in the dissolution behavior of the entire system ',
For instance, the DDC formed by dihydromyricetin (DMY) and
PTX reduced the solubility difference between the slightly water-
soluble DMY and the highly water-soluble PTX '**. This resulted in
a significant reduction in the equilibrium solubility of PTX and a
slight increase in that of DMY. The findings indicated that DMY
and PTX were released synchronously and continuously from the
cocrystal, enabling the simultaneous release of two drugs with
significantly different solubilities and synergistic therapeutic ef-
fects "°*. Temozolomide, a well-dissolved anticancer drug with
rapid clearance from the body, was cocrystallized with hesperid-
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Fig. 2 Self-assembly PTX nanocrystals loading with Cas-3 targeting PASMCs re-
store the FoxO1 expression and promote cell apoptosis, alleviating PA remodel-
ing and improving cardiopulmonary functions (Ref. 136, Copyright by Elsevier B.V
2024).

in, a less soluble natural anti-tumor component. The temozolom-
ide-hesperidin cocrystal reduced the solubility of temozolomide
from 7600 (pH 1.2) and 6424 (pH 6.8) to 483.9 (pH 1.2) and
193.5 pg'mL™ (pH 6.8) . Hesperidin effectively slows the re-
lease and absorption of temozolomide, extending its retention
time in the body. The lyotropic behavior of DDCs offers economic
benefits to both producers and consumers by reducing the re-
quired dose and production and marketing costs, and improving
patient compliance.
4.2.1.2 Improving drug stability: Physical, chemical, and optical
stability

DDCs are a multi-component system in which the active
groups of drug molecules in the lattice interact non-covalently.
This structural arrangement protects the drugs from environ-
mental factors such as water, oxygen, and light. For instance, le-
vofloxacin (LVFX) is a spectral antimicrobial agent commonly
used in antibacterial treatment. Under light exposure, LVFX’s hy-
drogen bond receptor (-C=0) is susceptible to degradation. The
experiment found that the LVFX-metacetamol cocrystal (LVFX-
AMAP) formed hydrogen bonding (-N-H"0), which enhances its
photostability '*°. Additionally, isoniazid is prone to oxidative de-
gradation. Gallic acid (GA) is commonly used as a natural antiox-
idant. The DPPH method demonstrated that the isoniazid-GA
cocrystal exhibited scavenging activity against DPPH radicals '’
4.2.1.3 Enhancing bioavailability and displaying synergistic effect

DDCs are employed for synergistic therapy and can poten-
tially reduce production and application costs '*®. For instance,
with the widespread and persistent use of antibiotics, antimicro-
bial resistance has become a significant global concern. Shem-
chuk et al. utilized a ciprofloxacin (synthetic antibiotic)-thymol
(natural antibiotic) cocrystal for infection treatment *°. While Es-
cherichia coli is sensitive to ciprofloxacin alone, thymol alone or
in a physical mixture with ciprofloxacin did not inhibit the
growth of Escherichia coli. However, the ciprofloxacin-thymol
cocrystal exhibited considerable antibacterial activity, signific-
antly surpassing that of ciprofloxacin alone '’. Interestingly,
DDCs serve as a potential and promising bridge, ideally linking
drugs with nutraceuticals to develop novel, safe, and effective
cocrystal products *”. For nutraceuticals, soluble drugs in DDCs
can promote the absorption of these insoluble nutraceuticals **’.
Similarly, nutritional health products may provide adequate pa-
tient nutrition and assist DDCs in achieving a more significant
curative effect while potentially reducing side effects.

4.2.2. Fabrication of DDCs
Selecting appropriate conformers is crucial for constructing a
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stable cocrystal structure and a rational drug combination. In vir-
tual screening, researchers typically commence by analyzing the
molecular structure of drug compounds. Subsequently, in con-
junction with computer-aided virtual screening, researchers
identify common hydrogen bond motifs through the examination
of X-ray crystal structure data in the Cambridge Structural Data-
base “’". The relevant drug supramolecular synthons are then
screened via high-throughput co-crystallization or supramolecu-
lar crystal engineering. Furthermore, the intermolecular interac-
tions and stacking arrangements between drug molecules are as-
certained “. Based on these intermolecular interactions, drug
molecules can be linked and recombined in a reversible and dy-
namic manner.

The supramolecular interaction module enables the pro-
grammatic combination of multiple drugs into a single delivery
system, circumventing the need for time-consumingand com-
plex synthesis processes. This supramolecular synthonic ap-
proach identifies common and reproducible intermolecular inter-
actions, such as van der Waals forces, halide bonds, and m-m
stacking. Hydrogen bond interactions, in particular, exhibit favor-
able strength and spatial flexibility ****"*. The most frequently ob-
served hydrogen bond receptors include carbonyl oxygen and
aromatic nitrogen, while hydrogen bond donors can be ranked by
their activity: -COOH > -NH- > R-OH "*. The -COOH group has
emerged as the most prevalent hydrogen bond and is commonly
observed in DDCs. Drug molecules typically contain functional
groups (eg., acid, acid pyridine, acid amide, amide, and pyridine)
that function as proton acceptors or donors. These groups form
supramolecular synthons, such as carboxylic acid dimers, acid-
pyridine, phenol-pyridine, and phenol-carboxylic acid, which fa-
cilitate the formation of DDCs.

Researchers employed various computational methods to
screen potential supramolecular synthons and predict the forma-
tion of DDCs. These include crystal structure prediction (CSP) **°,
molecular electrostatic potential surface energy (MEPSE) " *%,
electrostatic mode evaluation '"***, solution-based §pKa “*, and
Hansen solubility parameter (HSP) calculation *'**"". CSP serves
as a valuable in silico tool for predicting all possible crystal forms
of APIs, and it is the sole virtual screening method that directly
considers the impact of crystallinity on DDC formation. The co-
crystallization reaction energy (AE..), calculated through the sub-
limation thermodynamic cycle, represents the difference
between the cocrystal lattice energy (Ej,) and its pure compon-
ents *°"*'> 28 AE_. indicates the contribution of the thermody-
namic co-crystallization enthalpy and enables the measurement
of the co-crystallization tendency *°"*'**"*, For instance, Sun et al.
utilized CSP to predict the indometacin-paracetamol cocrystal
and investigated the effect of crystallinity on its formation *"".

The MEPSE value represents the strength of hydrogen bond
donors or acceptors in various functional groups to a significant
degree *'°. This value is employed to predict the likelihood of
forming DDCs. A higher negative MEPS value indicates a stronger
hydrogen bond receptor, while a higher positive value signifies a
more potent hydrogen bond donor *'°. Musumeci et al. combined
19 compounds with bicalutamide in a 1:1 molar ratio to create
cocrystals °*’. The pairing energy (8E) at interaction sites was cal-
culated and ranked based on MEPS values. The compounds that
form stable cocrystals are positioned near the top of the list *”’.
The researchers discovered that the possibility of cocrystal form-
ation was predictied through the change in pairing energy (ASE)
from the MEPS in pure solid phases.

Salt and cocrystals are multi-component crystalline materi-
als. The distinction between them lies in the transfer of a proton
between an acid and a base. In salts, the proton transfer is com-
plete, whereas in DDCs, no proton transfer occurs *"’. The phar-
maceutical industry generally accepts the pKa rule, which states
that salt formation is expected when the pKa difference between



Y. Lai etal.

acid and base exceeds 2 or 3 (ApKa = pKa[protonated base] -
pKa[acid] > 2 or 3) *'”*"%, At low ApKa values (ApKa < 0), acids
and bases almost exclusively form cocrystals. However, when
ApKa falls between 0 and 3, this parameter is insufficient for ac-
curately predicting solid salts *'***’. Jie et al. found that pKa cal-
culation offers a practical approach to designing stable DDCs.
They synthesized four -NH-rich isomers —H,BT (1H,1'H-5,5'-
bitetrazole), DATr (4,5-diamino-4H-1,2,4-triazole), 1MAT (1-
methyl-5-aminotetrazole), and 2MAT (2-methyl-5-aminotet-
razole) —into two salts and one cocrystal “*". TDATYr’s pKa value
lies between the pKa values of H,BT, enabling them to forma 1:1
molar ratio salt. The pKa values of 1MAT and 2MAT are lower
than those of H,BT, indicating reaction trends and cocrystal
formation. 2MAT’s pKa value is notably lower than 1MAT’s, sug-
gesting that 2MAT is more suitable for cocrystal formation with
H,BT. Experimental results from PXRD, DSC, and Hirshfeld sur-
face analysis confirmed the construction of the 2MAT-H,BT
cocrystal **".

At the molecular level, cocrystal systems exhibit miscibility.
The probability of cocrystal formation can be predicted based on
the solid-state miscibility of drug molecules *'’. HSPs provide a
valuable tool for estimating the miscibility of drugs with other
drugs, excipients, and carriers. HSPs can divide the resultant
force of various interactions into partial solubility parameters,
which represent the likelihood of interactions between mo-
lecules ***. A trend exists between drugs and supramolecular syn-
thons. When the total solubility parameter difference (At) is less
than 0.7 MPa"’, it indicates that the materials are miscible and
may form DDCs, while a At greater than 0.7 MPa’® suggests im-
miscibility **’.

4.2.3. Opportunities and challenges for DDCs

Over the past decade, a significant number of DDCs have
transitioned from laboratory development to commercial avail-
ability as a non-toxic and controlled-release DDS. Notably, DDCs
have found applications in the treatment of various diseases, such
as viral infections, inflammatory conditions, and cancer. Interest-
ingly, one-third of DDCs are classified as either non-steroidal anti-
inflammatory drugs or anti-tuberculosis agents.

The innovation and development of DDCs are significantly
encouraged by rational and up-to-date drug regulatory frame-
works during the R&D phase. In April 2011, the FDA first issued
guidelines for DDCs, defining them as "a crystalline substance
consisting of two or more molecules in the same lattice” *** and
classifying DDCs as a drug intermediate, thereby affecting their
development **. However, in 2018, the FDA revised the classific-
ation of DDCs from drug intermediates to APIs ***. The guideline
emphasized that the drug structure in DDCs is not altered but ex-
ists as a new solid form of the drugs. Improvements in patent ap-
plications and regulatory systems reduced the financial burden
on pharmaceutical enterprises in R&D, offering developers new
intellectual property opportunities.

The industrial-scale production methods of DDCs signific-
antly impact their successful commercialization. Crystallization is
the most critical process, determining physical properties such as
crystal shape, size, distribution, structure, and crystallinity.
These factors also affect subsequent production stages, including
filtration, drying, and milling '”. Controlling crystal nuclei and
polycrystalline transformation are crucial steps in achieving the
desired final product. Industrial-scale crystallization is per-
formed using two methods: batch operation and continuous crys-
tallization. Traditionally, the pharmaceutical industry relie on
batch crystallization processes, which continue to be practi-
ced **°. Well-established batch crystallization methods include
solvent evaporation “*’, grinding °”’, cooling crystallization ***,
and antisolvent crystallization **°, However, these methods have
drawbacks, such as batch-to-batch variabilities in particle size
distribution and morphology, complex scale-up production, ener-
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getic inefficiency, and the need for manual intervention *****. In
contrast, continuous crystallization enables higher yield and uni-
form purity “**. The continuous process unit offers flexibility in
controlling internal temperature, supersaturation, nucleation,
crystal growth, and other parameters “*’. For example, hot melt
extrusion, a continuous process, facilitates cocrystal formation
without solvents. Karimi et al. employed hot melt extrusion to
produce an ibuprofen-nicotinamide cocrystal ***. Additionally, fa-
vipiravir and theophylline cocrystals have been prepared using
the spray-dried method for treating respiratory viral infecti-
ons “*. Furthermore, Nandi et al. developed a microchannel re-
actor-based continuous liquid antisolvent crystallization setup
with downstream processing, providing a reproducible homogen-
eous crystallization environment **’. Over the past decade, con-
tinuous crystallization has become the preferred standard in the
pharmaceutical industry ****". Crystal engineering aids in select-
ing suitable supramolecular synthetic materials. Enhanced regu-
latory measures, reduced R&D resource consumption, and ad-
vancements in production technology encourage pharmaceutical
companies to invest more in DDC development.

The development of DDCs faces several notable challenges.
Firstly, the design and synthesis of DDCs pose a significant
hurdle. High-throughput cocrystal screening is commonly con-
ducted through hydrogen bond supramolecular interactions, lim-
iting the assembly of DDCs from alternative supramolecular in-
teractions such as electrostatic interactions and - packing *"".
Furthermore, the selected DDC combinations may not represent a
pharmaceutically acceptable pairing with the desired therapeutic
effects. Secondly, from the perspective of production conversion
and practical treatment, selecting APl combinations from exist-
ing market or development products is economically and logic-
ally sound. However, the limited selection range of APIs
creases the complexity of DDC design **". Generally, the synergist-
ic efficacy of multiple drugs is significantly influenced by the pre-
cise proportion and dosage of the constituent drugs **’. In DDCs,
there is typically a fixed stoichiometric ratio between the drugs,
usually 2:1, 1:1, or 1:2. Nevertheless, this stoichiometric ratio
does not always align with the optimal dose ratio for clinical effic-
acy.

in-

5. Self-assembled pure drug nanoparticles (SAPDNPs)

SAPDNPs represent a carrier-free DDS that harnesses inter-
action forces, such as electrostatic interactions, hydrogen bond-
ing, and hydrophobic interactions, between drugs or drug-drug
conjugates "’>**>**'_Through the process of self-assembly, single
or multiple drugs aggregate into nanostructures with a narrow
size distribution. These nanostructures exhibit a high drug encap-
sulation rate (> 92%), excellent stability, co-delivery of different
free drugs, and controlled release behavior, making them a prom-
ising candidate for the next generation of PDNs ***, The produc-
tion of SAPDNPs does not necessitate carriers or complex techno-
logies and tools, and the assembly process is characterized by
simplicity, environmental friendliness, low cost, and high repeat-
ability, facilitating large-scale production “*. Self-assembly is a
self-improving process in which components automatically or-
ganize into patterns or structures without human intervention.
During this process, drug molecules spontaneously form well-
defined and stable aggregations driven by non-covalent interac-
tions. By adjusting and combining assembled elements and driv-
ing forces, a diverse array of supramolecular self-assembly struc-
tures and functions can be derived.

SAPDNPs represent an emerging field, particularly in cancer
treatment and diagnosis. Many clinical anticancer drugs have
been criticized for their narrow therapeutic window and high
toxicity. SAPDNPs demonstrated unparalleled advantages over
traditional DDSs in terms of drug loading capacity, target site ac-
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cumulation, production, and preparation. Notably, the applica-
tion of SAPDNPs has extended to other therapeutic areas, includ-
ing anti-inflammatory, antibacterial, Parkinson’s disease (PD),
and immunotherapy. For instance, the NLRP3 inflammasome
serves as a key drug target for PD treatment ***. QC and polyethyl-
ene glycol (PEG) were self-assembled into carrier-free nanomedi-
cines (NanoQC) to inhibit NLRP3 inflammation-mediated neuro-
degeneration **°. Similarly, osteoarthritis (OA), the most com-
mon joint disease, exhibits increased incidence and prevalence
with age ****". Curcumin and icariin, two natural small-molecule
drugs, were self-assembled into Cur/ICA NPs through m-m stack-
ing **. Compared with the OA group, the expression levels of IL-
1B and IL-6 in the Cur/ICA NPs group were down-regulated by 49
and 126 times, respectively. SAPDNPs also seem to be showing
their strength in anti-infective therapy. It is well known that anti-
biotic abuse has further increased the resistance of bacteria, and
the public urgently needs new antimicrobial treatment options.
The natural antibacterial agents GA and berberine (BBR) were
self-assembled into spherical nanoparticles (GA-BBR NPs) **’. GA-
BBR NPs exhibited a more potent in vitro antibacterial effect com-
pared to the free BBR and GA-BBR mixture. However, the non-co-
valent or covalent combination of drugs and functional mo-
lecules purposefully modulates the overall properties of the drug
formulation. Variations in drug formulations and preparation
methods influence the supramolecular interactions that govern
self-assembly and treatment efficacy.

5.1. Design and fabrication of SAPDNPs

The self-assembly ability of drugs is a critical factor in the de-
velopment of SAPDNPs. For instance, HCPT self-assembled nano-
particles with an irregular and uneven structure aggregated and
precipitated in aqueous conditions. It meant that HCPT was not
suitable to produce stable HCPT self-assembled nanoparticles **’.
Establishing a computational and design method that can accur-
ately and quantitatively predict the formation of stable SAP-
DNPs from APIs is essential. Various techniques, such as quantit-
ative structure-nanoparticle assembly prediction (QSNAP), mo-
lecular docking, simulation, and supramolecular engineering, are
employed to predict the self-assembly capability of APIs. Shamay
et al. utilized the QSNAP model to design SAPDNPs **'. The nano-
particle assembly and size were highly predicted by electrotopo-
logical molecular descriptors (SpMAX4Bh(s) and GetAway R4e),
respectively. Nineteen compounds with SpMAX4_Bh(s) > 6.99
and 25 compounds with SpMAX4_Bh(s) < 6.99 were selected for
nanoparticle formation experiments **'. Remarkably, all but one
drug (avasimibe) behaved as predicted by the SpMAX4_Bh(s)
value. The discrepancy between the size of these nanoparticles
and the value predicted by GETAWAY R4e is within 15 nm **".
This discovery demonstrates the potential of QSNAP in designing
SAPDNPs. However, significant advancements are still required
for it to become a practical tool. Building upon existing technolo-
gies and expertise, researchers are conducting extensive investig-
ations into the mechanisms and novel formulations of SAPDNPs.
Numerous studies showed that the formation and stability of
SAPDNPs were primarily influenced by the proportion of free
drugs, the linkers of amphiphilic prodrugs, and the self-assembly
method.

SAPDNSs can form through non-covalent interactions among
the drug molecules themselves. The quantity and variety of func-
tional groups present, which is determined by the number of
drugs involved, influence the hydrophobic-hydrophilic or electro-
static balance between molecules. This balance dictates the inter-
molecular interactions that drive the self-assembly process. A
study demonstrated that the addition of a hydrophobic near-in-
frared emitting element transformed camptothecin-Gemcitabine
carrier-free amphiphilic prodrugs (CPT-ss-GEM) from nanowires
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to uniform spherical structures *****, The primary reason may be
the replacement of m-m interactions by hydrophobic interactions
as the dominant force in self-assembly. The ratio of drugs can im-
pact the particle sizes and shapes of SAPDNPs “*. For instance,
deprotonated Ce6 can co-assemble with HCPT, which has a lim-
ited self-assembly capacity **’. In this system, the morphology of
the co-assembled structure is significantly influenced by the pro-
portion of hydrophilic components. The 1:1 and 2:1 (HCPT:Ce6)
co-assembled systems, which have higher hydrophilicity, form ir-
regular needle-like nanostructures. In contrast, the 4:1 and 8:1
(HCPT:Ce6) co-assembled systems, with lower hydrophilicity,
yield uniform rod-like nanostructures or even mutually nested
structures '*. Altering the molar ratio of multiple drugs can af-
fect the structure of self-assembled systems, resulting in forma-
tions such as brick mud structures or core-shell structures **°
The varying shapes of SAPDNs significantly influence their in
vitro release, in vivo pharmacokinetics, and efficacy. PTX nano-
crystals and amorphous indomethacin (IDM) form a "core-shell”
structure through intermolecular interactions, with IDM as-
sembly on the surface *°. Based on the structure and in vitro re-
lease data, researchers hypothesized that IDM in IDM-PTX would
be released rapidly to modulate the immune system, while the
PTX nanocrystals would effectively target tumor tissues and pro-
long biological half-life *°.

The self-assembly process of amphiphilic prodrugs involves a
competition between drug-water and drug-drug interactions. The
formation and stability of amphiphilic prodrug self-assembly are
driven by the hydrophobic-hydrophilic equilibrium. Specifically,
the ratio between hydrophilic and hydrophobic segments can in-
fluence the formation and stability of the self-assembly, which
can be modified by altering chains and functional linking gro-
ups . Linkers altered the spatial position and rotational de-
grees of freedom between prodrugs to affect the driving force and
energy barrier of the self-assembly and modified the micro or
macro properties of supramolecular material ***. For instance,
PTX typically forms needle-like crystals due to crystal growth,
which hinders the formation of self-assembly. Pei et al. intro-
duced a soft and freely rotatable o-bond (a bicarboxylic acid
bond) between PTX dimers to provide more flexible space, pre-
venting the orderly and stable lattice arrangement of PTX and fa-
cilitating self-assembly **°.

SAPDNPs can be prepared using various methods, including
antisolvent precipitation, template-assisted techniques, and in
vivo self-assembly “*°. The conventional nanoprecipitation meth-
od has limitations such as low productivity, relatively large
particle size, and significant batch-to-batch variance **>.In con-
trast, the template-assisted method offers a novel and size-con-
trollable preparation strategy, utilizing templates such as anod-
ized aluminum oxide (AAO) and ice *°**”’. Zhang et al. developed
a technique where a drug organic solution is loaded into an AAO
or ice template > *’, Upon removal of the organic solvent, the
drugs self-assemble, and the template is subsequently stripped
away, yielding uniform SAPDNPs. The ice template-assisted
method is particularly advantageous, as it produces SAPDNPs
with high reproducibility and adjustable size while avoiding the
use of inorganic template materials. This green, low-cost, and
high-yield production method represents a significant advance-
ment in SAPDNP preparation **’.

5.2. Types of SAPDNPs

5.2.1. SAPDNPs composed of a single drug

Nanoparticle preparation via nano-precipitation may result
in drug molecules dissolving or precipitating into large aggreg-
ates. Interestingly, certain APIs possess the ability to independ-
ently and spontaneously self-assemble into SAPDNPs “*. Fan et
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al. designed a self-assembled ursolic acid nanoparticle (UA-NPs)
system utilizing electrostatic and hydrophobic interactions ***. UA-
NPs demonstrated higher cellular uptake rates and toxicity com-
pared to ursolic acid in A549 cells. Furthermore, Liet al. de-
veloped self-assembled spherical nanoparticles composed of di-
hydroartemisinin (DHA NPs) *’. In a neutral environment (pH
7.4), DHA NPs released only 20% of their dihydroartemisinin
payload over 48 h. Conversely, in an acidic environment (pH 5.0),
more than 65% of DHA was released from the DHA NPs. These
results suggest that DHA NPs have the potential for anti-tumor
therapy in the weakly acidic tumor microenvironment (TME). Ad-
ditionally, numerous other chemotherapy drugs exhibit self-as-
sembly capabilities, including PTX **, 6-mercaptopurine, and
curcumin **". These self-assembly systems share similar advant-
ages, such as simple preparation, ultra-high drug loading effi-
ciency, and significantly enhanced delivery efficacy.

5.2.2. SAPDNPs composed of multiple drugs

The co-assembly of multiple drugs exhibits a higher level of
complexity compared to single-drug systems. To achieve equilib-
rium, a greater number of drug molecules must balance numer-
ous molecular interactions “*’. Co-assembly systems involving
multiple drugs encompass two primary modes: the co-assembly
of hydrophilic and hydrophobic drugs and the co-assembly of hy-
drophobic-hydrophobic drugs. For instance, various natural act-
ive compounds or novel chemical entities, such as BBR and cin-
namic acid, demonstrated the ability to co-assemble into nano-
particles, presenting potential applications in precision ther-
apy 263-266.

Monotherapy often exhibits significant limitations in the
treatment of diseases. As a combination therapy strategy, mul-
tidrug self-assembly offers enhanced functionality, particularly in
tumor therapy, by improving efficacy, reducing side effects, and
increasing patient compliance. In the middle and late stages of
cancer, chemotherapy frequently becomes the sole conventional
treatment option. Considering the potential toxicity of chemo-
therapeutic agents, SAPDNPs composed of chemotherapeutic
agents with different anti-tumor mechanisms represent a prom-
ising co-delivery strategy. This approach may achieve rapid tu-
mor eradication while avoiding long-term toxicity. For instance,
mitoxantrone, PTX, and HCPT are three commonly used chemo-
therapy drugs *°” **°. Interestingly, co-assembly did not occur
between any two of the three drugs but was observed when all
three were combined. This co-assembled combination therapy
demonstrated significantly higher cytotoxicity compared to the
three free drug groups and the mixture of the three drugs **.
Moreover, it substantially enhanced cytotoxicity against resistant
cells **°. Similarly, tumor complications, including inflammation,
pain, and infection, are often associated with further cancer pro-
gression. These complications are evidently detrimental to tu-
mor treatment and long-term survival. Co-assembling sympto-
matic drugs and chemotherapeutic agents represents a beneficial
anticancer strategy.

Minimizing adverse effects, alleviating pain, and enhancing
patient compliance are crucial aspects of effective disease man-
agement. Photodynamic therapy (PDT), a non-invasive thera-
peutic and diagnostic approach approved by the FDA, has the po-
tential to reduce the likelihood of tumor recurrence and drug res-
istance “°"’*. As reported by Stapleton et al., heat and radiation
can modulate fluid dynamics, enhance the EPR effect and im-
prove the transport efficiency of nanomedicines > *’°. Building
upon this foundation, researchers have developed self-as-
sembled carrier-free nanomedicines that incorporate a photo-
sensitizer (PS) and additional components, such as phototherapy
enhancers and chemotherapeutic agents *”’. To achieve optimal
phototherapy outcomes, efforts focused on reducing oxygen con-
sumption, disrupting antioxidant defense mechanisms, and com-
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bining chemotherapeutic drugs. For instance, Li et al. engineered
a self-assembly delivery system comprising the photodynamic
synergist TH588 and the PS Ce6 *’°. TH588 interfered with the
ROS defense system in tumor cells, potentiating the DNA oxidat-
ive damage induced by Ce6. Similarly, Zhang et al. developed SAP-
DNPs containing genistein, a GLUT-1 inhibitor flavanone, and
Ce6 *°, achieving synergistic effects through starvation therapy
and PDT without significant cytotoxicity associated with chemo-
therapeutic agents. PA imaging provided visual guidance and
monitoring for PDT, demonstrating the high tumor accumulation
efficiency of the nanoparticles **. Additionally, various photo-
therapy enhancers, such as vitamin B **', iron apoptosis ***, oxid-
ative phosphorylation inhibitors **’, and glutathione transferase
inhibitors ***, were explored to disrupt the ROS system in tumor
cells, thereby enhancing the anti-tumor and imaging effects of
PDT. Furthermore, Guo et al. utilized hydrophobic ursolic acid,
PTX, and indocyanine green, an amphiphilic tissue-penetrating
agent, to create a dual anti-tumor self-assembled nanodrug “*.
This spherical nanodrug significantly improved the solubility of
ursolic acid and PTX, maintained the photostability of indocyan-
ine green, and achieved prolonged accumulation at tumor sites.

Conventional cancer treatments, such as surgical resection
and chemotherapy, cure less than 50% of patients *****’
otherapy, which aims to enhance immune defenses to eliminate
malignant cells, revolutionized cancer treatment and led to a
deeper understanding of tumors “*>. A study combining an im-
mune checkpoint blocker (anti-CTLA-4) and a chemotherapeutic
sensitizer (lamonidin) in a co-delivery liposome system demon-
strated an enhanced immune response to tumor cells **. As SAP-
DNPs have a higher loading capacity than liposomes, the re-
searchers suggest that combining immune checkpoint-blocking
therapy and adoptive T-cell transfer with chemotherapy and pho-
totherapy could be an effective approach to treating tumors us-
ing a self-assembled carrier-free delivery system. For instance,
the study incorporated the immune adjuvants metformin and 7-
ethyl-HCT into self-assembled nanoparticles (MS-NPs) ** **'.
Treatment using MS-NPs demonstrated enhanced chemotherapy
and immunotherapy effects in mice compared to monotherapy,
resulting in a higher survival rate.

. Immun-

5.2.3. SAPDNPs composed of prodrugs

SAPDNPs can be formed by amphiphilic precursor drugs, in-
tegrating the benefits of both nanoparticles and prodrugs. This
approach involves linking the active drug to other drugs or active
components via cleavable bonds. In drug-conjugate delivery sys-
tems, conjugates with distinct properties impart specific func-
tionalities to the system, such as sustained and controlled re-
lease, immunogenicity reduction or elimination, and biological
half-life extension ****%,

APIs, functioning as hydrophobic or hydrophilic components,
can be modified by small molecules or high polymers to form am-
phiphilic prodrugs, providing opportunities for the self-delivery
of drugs **’. Hydrophilic groups appear to be indispensable for
the construction of amphiphilic prodrugs. Long et al. designed a
self-assembled nanodrug (Nano DOPA) consisting of an am-
phiphilic block copolymer [PEG-b-P (L-DOPA (0Ac),)] ***. In the
behavioral test of L-DOPA-induced dyskinesia mouse models, ab-
normal involuntary movement scores in the Nano DOPA group
showed a more significant reduction compared with the L-DOPA
group, suggesting that Nano DOPA may be a potential drug for
Parkinson’s treatment. Similarly, the PTX-succinic conjugate (PTX-
SA) joined PTX and succinic acid together via an ester bond **°.
Parkinson’s treatment. Similarly, the PTX-succinic conjugate (PTX-
SA) self-assembled into nanofibers in aqueous solution **,
achieving a drug-loading of PTX as high as 89%. With the hydro-
lysis of ester bonds, PTX was slowly released from PTX-SA, which
enhanced its anti-tumor efficacy *”.
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The incorporation of small hydrophobic moieties can en-
hance the balance and interplay of intermolecular interaction
forces, enabling the modification of water-soluble drugs to exhib-
it spontaneous aggregation behaviors. This approach facilitates
the design of self-assembly systems for water-soluble drugs. An
effective strategy involves combining water-soluble drugs with a
series of fatty acid or sterol analogs to form amphiphilic prod-
rugs and promote their aggregation behaviors. For instance, Jing
et al. developed a conjugate of docetaxel and oleic acid connected
via thioether bonds **°. This conjugate was utilized to obtain oxid-
ation and reduction-sensitive SAPDNPs through nanoprecipita-
tion. Similarly, amphiphilic molecules (SQdFdC) have been syn-
thesized °”’. SQdFAC demonstrated a prolonged blood half-life
and enhanced anti-tumor activity compared to gemcitabine.

A crucial aspect of self-assembled pro-DDSs is the ability to
release APIs from their carriers, enabling them to exert thera-
peutic effects on the organism. Self-immolation linkers represent
a powerful tool for developing targeted pro-DDSs that conjugate
multiple drugs. These linkers are designed to respond to specific
chemical or physical stimuli, such as acidic environments, en-
zymes, or redox conditions, facilitating targeted delivery of mul-
tiple drugs *** **°. Homodimeric prodrugs based on self-immola-
tion linkers can self-assemble into nanomedicines with high drug
loading capacities **”*"". For instance, a novel paclitaxel-s-s-pacl-
itaxel (PTX-s-s-PTX) conjugate was synthesized using a disulfide
bond, which self-assembled into uniform nanomedicines (PTX-s-s-
PTX NPs) **. The high drug loading (78%) and redox-sensitive di-
sulfide bonds of PTX-s-s-PTX NPs enabled rapid and extensive re-
lease of PTX within tumor cells. Similarly, conjugates of different
drug molecules can self-assemble into heterodimeric prodrugs,
which offer advantages for combination therapy compared to ho-
modimeric prodrugs. The FDA has approved irinotecan (CPT-11)
and topotecan for the treatment of colorectal and small-cell lung
cancer, respectively. However, the clinical application of camp-
tothecin (CPT) was significantly limited by its poor solubility,
high systemic toxicity, and instability . Ao et al. conjugated the
hydrophobic CPT with the hydrophilic photothermal agent neoin-
docyanine green, which self-assembled into IR820-SS-CPT NPs **.
The disulfide bond of IR820-SS-CPT was cleaved in response to
reduced glutathione in the TME, releasing IR820 and CPT for
combined chemo-photothermal treatment. Recently, several SAP-
DNPs consisting of imaging agents and drugs were designed to
respond to the acidic TME through pH-responsive linkers, such as
hydrazones, acetals, esters, and imines. For example, Yu et al.
synthesized ketone-linked amphiphilic glucose-etoposide prod-
rugs that self-assembled into nanomedicines activated by dual
enzyme and acid stimulation, resulting in the effective release of
acetone and glucose *”.

Water-soluble biomacromolecules were conjugated with
APIs through hydrophilic parts or self-immolation junctions **°.
Drug-peptide amphiphilic conjugates that self-assemble into
nanostructures are widely used to deliver various anticancer
drugs for tumor treatment *“°”. For instance, Man et al. de-
veloped cathepsin B-cleavable peptide (Phe-Arg-Arg-Gly, FRRG)-
doxorubicin prodrugs (FRRG-DOX). FRRG-DOX self-assembles in-
to stable targeted SAPDNPs, which target tumors and enhance
therapeutic efficiency *'’. Interestingly, some water-soluble pep-
tide-drug conjugates cannot self-assemble in vitro. However, they
can undergo supramolecular self-assembly *** and biocompatible
condensation reactions under enzyme induction ****"”. Com-
pared to normal cells, certain enzymes often exhibit abnormal
activity in cancer cells. Guided by these enzymes, amphiphilic
prodrugs self-assemble into stable nanostructures through
supramolecular interactions (m-m interactions, hydrogen bonds,
and intermolecular charge interactions) *'*. These nanostruc-
tures demonstrate enhanced cellular uptake and drug retention
in cancer cells, which is particularly beneficial for overcoming
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multidrug resistance **. Liang et al. combined PMI, a functional
peptide that induces cancer cell apoptosis, with HCPT to produce
a self-assembling drug-peptide conjugate *"°. This amphiphilic
conjugate modulated peptide folding and self-assembly behavior
to obtain self-assembled nanomedicines, exhibiting enhanced cel-
lular uptake and nuclear accumulation capacity. Similarly, Miao et
al. designed the acetyl-Arg-Val-Arg-Arg-Cys(StBu)-Tyr(I-125)-2-
cyanobenzothiazole conjugate *'*. Overexpressed furin in tumor
cells regulates the biocompatible condensation reaction between
the 1,2-amino-mercaptan group of cysteine and the cyanide
group of 2-cyanobenzothiazole, allowing the conjugate to self-as-
semble into radioactive nanoparticles (1251-NPs) in vivo. The cel-
lular enrichment of 125I-NPs also prevents cell clearance, ren-
dering them a promising in vivo imaging technique *".

Nucleic acids, such as messenger RNA (mRNA) and small in-
terfering RNA (siRNA), are highly hydrophilic and negatively
charged natural biological macromolecules. DDSs, including lip-
ids and polymers, are necessary for their in vivo and in vitro deliv-
ery ' In comparison to PDNs, the potential side effects of
polymer materials and synthetic lipids as carriers have not been
thoroughly elucidated *'®. However, the presence of phosphoric
acid and bases in nucleic acids provides the opportunity to devel-
op nucleic acid-API conjugates and SAPDNPs °"., For instance, a
cationic PS was conjugated with the siRNA targeting Polo-like
kinase 1, which then self-assembled into siRNA-photosensitizer
nanoparticles (siPLK1-NB NPs) through electrostatic attrac-
tion *°. Upon light exposure, siPLK1-NB NPs effectively inhibited
the growth of external tumor cells by downregulating the expres-
sion of PLK1 and inducing photodynamic cell death.

6. Active-targeted PDNs

Active targeting demonstrates superior precision and deliv-
ery efficiency compared to passive targeting. This approach signi-
ficantly enhances the internalization and accumulation of drugs
at target sites, resulting in improved therapeutic outcomes **’.
The modification of antibodies or the combination of antibodies
with drugs yields carrier-free nanomedicines with high selectiv-
ity for the target, enabling the simultaneous delivery of both
therapeutic agents **" ***. Active-targeted PDNs, which include
nanobodies and ADCs, exhibit promising potential in disease
treatment.

6.1. Nanobodies

Antibodies are widely employed in the treatment of solid tu-
mors. However, their efficacy is limited by their large size, inad-
equate tumor penetration, and instability within solid tissues.
Nanobodies, derived from the unique functional heavy chain in
camel serum, represent a novel and distinct antigen-binding frag-
ment ***, With a molecular weight of 90 kDa, nanobodies exhibit
improved tumor penetration properties *****°, Furthermore, their
variable antigenic-binding domain (VHH) possesses a prolate
shape with dimensions of 4 nm x 2.5 nm x 3 nm **. Nanobodies
combine the specific targeting ability of antibodies with the drug
delivery systems of PDNs. They possess excellent characteristics
such as small size, high stability, strong antigen-binding affinity,
water solubility, and natural origin, which generate significant in-
terest in their potential for disease diagnosis and treatment. Not-
ably, Caplacizumab received approval from the EMA and FDA in
2018 for the treatment of thrombotic thrombocytopenic purp-
ura %, Additionally, numerous nanobodies are currently undergo-
ing clinical studies for the treatment of various diseases, particu-
larly cancer **”**’, As a result, nanobodies have bright prospects
in the treatment and diagnosis, which inspires enthusiasm for in-
vestment by many pharmaceutical companies.

Consequently, nanobodies demonstrate promising prospects
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in both treatment and diagnosis, garnering enthusiasm and in-
vestment from many pharmaceutical companies. Nanobodies
possess unique structural characteristics that differentiate them
from monoclonal antibodies. These distinct features include:
(1) Strong affinity: The antigen-binding loop of nanobodies facil-
itates interaction with concave paratopes on the antigen surf-
ace **, exhibiting an affinity equal to or surpassing that of con-
ventional antibodies *****’; (2) High stability and solubility: Addi-
tional disulfide bonds between CDR1 and CDR3 confer high sta-
bility to nanobodies, enabling them to retain full binding capacity
after one week at 37 °C **'**, Furthermore, crystal data of VHH
and its antigen complex confirmed the conversion of its frame-2
region from a hydrophobic to a more hydrophilic region ******,
contributing to the high solubility of nanobodies. (3) Low immun-
ogenicity: The gene encoding VHHs shares high homology with
human VH families 3 and 4 ****’. Moreover, humanized nan-
obodies further reduce immunogenicity ***. Temple et al. gener-
ated a series of humanized anti-CD72 nanobodies for B-cell ma-
lignancies **°. (4) Rapid tissue penetration and blood clearance:
Compared to monoclonal antibodies, small-sized nanobodies do
not exhibit a barrier effect at the binding site **°, resulting in
more uniform tumor distribution. Tumor interstitial fluid pres-
sure and the EPR effect facilitate the penetration of small-sized
nanobodies into tumors **°. However, free nanobodies are rap-
idly cleared from the bloodstream **', which is advantageous for
diagnostic applications but detrimental for nanobody-drug con-
jugates. (5) Construction and production: Nanobodies can be
readily expressed in microbial systems (e.g., bacteria, insects, and
fungi) and quickly selected from display libraries. This process
eliminates the need for cell culture, screening, and purification,
thereby reducing production costs *****’. Fig. 3A illustrates the
nanobodies produced by phage display libraries.

Nanobodies are versatile tools utilized in various domains,
including scientific research, disease diagnosis, and treatment.
Nanobodies can accurately identify and quantify clinical biomark-
ers ***. The elongated VHH in nanobodies exposes convex para-
topes well-suited to bind the fusing or cryptic epitopes of anti-
gens **°. Leveraging this principle, nanobodies were employed to
block the active site in lysozyme *****, identify the pathogen
Trypanosoma *****°, successfully distinguish Brucella and Yersin-
ia genera *'~** and detect taeniasis solium infection ***. Further-
more, researchers successfully developed a sensitive sandwich
enzyme-linked immunosorbent assay (ELISA) to detect porcine
reproductive and respiratory syndrome viruses using two specif-
ic nanobodies **°. The sensitivity of this assay was comparable to
that of a real-time polymerase chain reaction assay, demonstrat-
ing the potential of nanobodies for ELISA applications **°.
Moreover, high stability and water solubility expand the scope of
nanobodies as research tools. For instance, producing a high-
quality diffractive crystal of the target molecule is a critical factor
for the structural analysis of biological macromolecules **°. Crys-
tallography studies showed that the nanobody VHH-antigen com-
plex was a crystallization chaperone *’.It can promote inter-
molecular interactions in the lattice and reduce conformational
heterogeneity to increase the crystallization ability of the tar-
geted molecule *77%,

Nanobodies, compact antibody fragments, represent a prom-
inent application in high-resolution imaging **°. When conjugated
with functional molecules such as dyes, radionuclides, or biotin,
nanobodies exhibit specific binding to biological targets. This
complex generates signals at the target site, enabling non-invas-
ive visual diagnosis. For instance, nanobodies targeting the ALFA-
tag proved suitable for super-resolution imaging, intracellular de-
tection, immunoprecipitation, and Western blotting assays *’.
The nanobody E8, which targets CDH17, has demonstrated effic-
acy as an imaging probe for gastric cancer **'. Following the injec-
tion of E8-IR800 into tumor-bearing mice, significantly stronger
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fluorescent signals were observed at the tumor site. Notably, E8
exhibited minimal presence in the heart, brain, lungs, or kidneys.
Furthermore, staining of critical organs such as the brain, heart,
lung, and stomach following E8 nanobody injection revealed no
discernible positive staining, with the exception of liver tissues,
confirming E8’s specific binding activity for CDH17-overexpress-
ing tumors. Similarly, radionuclide-labeled nanobodies were em-
ployed for imaging atherosclerotic lesions *** **°, However,
nanobody-based imaging techniques encounter certain limita-
tions, including rapid renal clearance, challenges in penetrating
the blood-brain barrier, and insufficient soluble targets.

Nanobody-based therapies are divided into two primary
strategies: he use of pure nanobodies as receptor antagonists and
the conjugation of nanobodies with functional molecules. These
novel therapeutic approaches optimize efficacy and expand the
range of potential applications, including cancer ****®, inflamma-
tion *°**%, viruses **, Alzheimer’s disease **, toxins *’°, parasi-
tes **°, and autoimmune diseases *’. For instance, when the nucle-
otide-binding domain (NBDs) ofthe adenosine triphosphate
(ATP)-binding cassette transporter P-gp binds to ATP, the con-
formation of the P-gp transmembrane domain changes *’"*’?, res-
ulting in P-gp transporting substrates extracellularly. The high-af-
finity nanobody Nb592 binds to the NBDs, inhibiting the ATP-
driven conformational transformation of the P-gp transporter,
demonstrating that nanobodies can effectively inhibit ATP-hydro-
lyzed P-gp. Furthermore, as receptor antagonists, nanobodies can
block receptor-mediated life activities, thereby interfering with
disease progression and development. Esparza et al . designed a
nanobody (NIH-CoVnb-112) that binds to the spike protein re-
ceptor-binding domain of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) *”°. The NIH-CoVnb-112 prevented
the interaction between the spike protein and angiotensin-con-
verting enzyme 2 to treat SARS-CoV-S and simplify antiviral vac-
cine production. Clinically, serum therapy remains widely used to
treat patients with poisoning. Nanobodies are ideal serum toxin
scavengers for detoxifying natural toxins, such as snake and scor-
pion venom *’’. Darvish et al. developed a nanobody (Nb12) for
black scorpion venom *’*, and after intraperitoneal injection of
lethal toxin doses, mice administered intravenous injections of
Nb12 after 20 minutes all survived successfully. Due to their high
specificity and low toxicity, nanobodies are becoming effective
therapeutic agents for autoimmune diseases, as exemplified by
the 2018 approval of caplacizumab by the EMA and the FDA for
the treatment of thrombotic thrombocytopenic purpura *.

Nanobodies can be conjugated with a variety of functional
molecules, including small-molecule drugs, toxins, enzymes, and
imaging agents, to facilitate combined therapeutic approaches *’°
(Fig. 3B). For instance, Raimond et al. developed an anti-epiderm-
al growth factor receptor (EGFR) nanobody-PS conjugate that in-
tegrates immunotherapy with PDT *’°. These conjugates pre-
cisely deliver PS into tumors via the anti-EGFR nanobodies, indu-
cing cell apoptosis in EGFR-overexpressing tumor *’°. Addition-
ally, Maza et al. synthesized nanobody-natural killer (NK) cell
conjugates *’7, which effectively eliminate tumor cells due to the
specific binding and killing effect of NK cells. Notably, anti-pro-
grammed cell death ligand 1 (anti-PD-L1) nanobodies combined
with Toll-like receptor 7 (TLR7) agonists form double-targeted
nanomedicines ***, TLR7 agonists activate immunity and upregu-
late programmed cell death ligand 1 (PD-L1) levels, while anti-PD-
L1 nanobodies serve as immune checkpoint blockers that target
tumors. This conjugate activates both innate and adaptive im-
munity against tumors.

6.2. ADCs

To address the limitations of therapeutic antibodies, such as
low activity, poor stability, and short circulation time, research-
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Fig. 3 The generation and application of nanobody. (A) Phage display libraries are used to produce nanobodies. Nanobody generation includes extracting mRNA, reversely
transcribing into cDNA, and inserting plasmid into phage. (B) Nanobodies are used to prepare the functionalized liposomes for the treatment of cancer.

ers have modified conventional immunoglobulins. ADCs are at-
tracting increasing attention in the antibody market, with global
sales projected to exceed $16.4 billion by 2026 ***’*, ADCs are se-
lective and carrier-free anti-tumor nanomedicines that can
achieve effective cytotoxicity and drug loading. ADCs consist of
three components: monoclonal antibodies (mAbs), cytotoxins,
and chemical linkers. After the mAb specifically binds to antigens
on the surface of tumor cells, ADCs selectively deliver cytotoxic
drugs, inducing tumor cell death *° (Fig. 4). To date, 14 ADCs
have been approved for clinical use (Supporting Information Ta-
ble S4). By combining the specificity of antibodies with the high
potency of cytotoxins, ADCs can be effectively applied to treat
various diseases, particularly cancer.

The development of ADCs meets significant challenges due to
the required combination of tumor antigens, antibodies, linkers,
and cytotoxins *’°. Firstly, the selected antigen must be overex-
pressed on the surface of target cells to enable recognition and
binding of ADCs in the systemic circulation. Subsequently, ADC-
antigen complexes depend on receptor-mediated endocytosis for
the delivery of cytotoxic drugs into target cells **’. For instance, in
the multicenter phase II trials with GO/Mylotarg®, Jedema et al.
discovered that GO-induced cell death is partially CD33-medi-
ated **', establishing a foundation for the effective treatment of
GO tumors. The surface expression level of antigens also plays a
crucial role in ADCs. Numerous antigens targeted by approved
ADCs include blood tumor targets (CD33, CD30, CD22, and
CD79b) and solid tumor targets (human EGFR-2 (HER2), Nectin-
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4, tumor-associated calcium signal transducers 2 (TACSTD2), tis-
sue factors, and FRa) *****. Moreover, an ideal antibody with a
strong affinity (KD < 0.1 nmol-L™") and targeting specificity is es-
sential for ADCs ***. For example, the human/mouse chimeric an-
tibody ch10D7 exhibits a strong affinity for overexpressed CDCP1
in cancer cells. Khan et al. developed ADCs that link the antibody
and cytotoxin MMAE via an enzymatically cleaved linker **. Fol-
lowing internalization by tumor cells, the ADC-antigen complex
significantly inhibited tumor cell growth **> **  Furthermore,
many antibodies in ADCs were derived from highly immunogenic
mice. To reduce immunogenicity and extend plasma half-life,
modifying and adjusting the Fc fragments of immunoglobulin G
(IgG) through antibody engineering is necessary **’. The next gen-
eration of ADCs encompasses chimeric, humanized, and fully hu-
man antibodies.

Linkers between drugs and antibodies play a critical role in
ADCs. Ideal linkers allow ADCs to remain stable in blood circula-
tion and rapidly release APIs upon cell entry. Linkers are gener-
ally categorized as cleavable or non-cleavable. The cleavable
linker responds to physiological and environmental stimuli with-
in the cell, including enzymes and acid. The non-cleaved linker
forms strong bonds with monoclonal antibodies (mAbs) and un-
dergoes lysosomal degradation. Caculitan et al. investigated the
impact of the VC(S) linker, cleaved by protease, on ADC efficacy,
demonstrating cytotoxin release through various mechanisms
and inhibition of cathepsin B expression **. Drug selection in
ADCs is based on disease type and therapeutic mechanism, with
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molecules required to maintain antibody biological activity and
exhibit high efficacy (ICs, within 0.01-0.1 nmol-L™) ***. Further-
more, immune stimulatory molecules, such as toll-like receptors
(TLRs) 7/8 or their stimulators, can also be utilized in ADC fab-
rication **”*%,

7. Challenges of PDN commercialization

Pharmaceutical companies made significant progress in char-
acterizing the physicochemical properties of polymeric drug nan-
oparticles during R&D. Key parameters such as particle size dis-
tribution, half-life, drug loading efficiency, in vitro dissolution
rates, and in vivo biodistribution have been extensively stud-
ied *”'. These efforts are enhanced by integrating data from pro-
teomics, metabolomics, and epigenetics, which together contrib-
ute to the development of a sophisticated Big Data framework for
evaluating PDNs “*****, Leveraging this Big Data approach, phar-
maceutical stakeholders can predict the clinical and commercial
viability of PDN formulations, assess profit margins, and address
critical considerations like reproducibility, technical feasibility,
and the financial demands of clinical trials and production ****,
Although nanomedicines are rapidly developing, commercializ-
ing PDNs remains a significant challenge. The process of licens-
ing novel PDN technologies and patents to established or startup
companies is particularly difficult due to the high development
costs and regulatory complexities **°. The increasing costs of de-
velopment hinder the approval process for the production and
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marketing of PDNs
7.1. From the lab to market

The progression from laboratory discovery to commercially
viable PDN products remains an arduous and complex process.
Despite the extensive research on PDNs reported in academic lit-
erature, only a small fraction have successfully transitioned to the
commercial market, primarily due to the prohibitive costs associ-
ated with their development and manufacturing **> **. To ad-
dress these challenges, the pharmaceutical industry must imple-
ment advanced manufacturing technologies capable of mass-pro-
ducing PDNs at reduced expenses “°". A critical reevaluation of the
pharmaceutical industry’s role and contribution to PDN develop-
ment is essential for bridging the gap between research innova-
tion and large-scale commercial production .

7.1.1. Supervision of the production line

Mass production methods that satisfy regulatory standards
while maintaining low costs are critical for pharmaceutical manu-
facturing “**. Reports suggest that the costs of goods sold consti-
tute 20%-25% of total sales *"'. Rosenberg further proposes that
the development of manufacturing techniques and clinical pro-
duction expenses collectively account for 40%-60% of the total
development costs “*"“”.

There is a pressing need to design and develop a more ration-
al manufacturing facility, encompassing production equipment,

il
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Fig. 4 The internalized and non-internalized mechanisms of ADCs. (A) Internalized ADC. ADC binds to the surface antigen and undergoes internalization, followed by lyso-
somal capture and degradation to release the cytotoxic payload. The released cytotoxin then interacts with its intracellular target or DNA, inducing apoptosis. (B) Non-in-
ternalized ADCs. ADCs release payloads in response to the TME, which subsequently enter cancer cells by diffusion and interact with DNA.
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environmental control systems, and personnel ***. Increased cap-

ital investment is crucial for quality and risk management in the
production process, including induced crystallization, solvent
evaporation, plasmid transfection, and antibody screening. Addi-
tionally, numerous databases containing clinical and marketing
information are undergoing refinement and development, aiding
investors in evaluating market potential and profit scale **.
Streamlined and secure production lines are vital for the pharma-
ceutical industry. Advanced manufacturing techniques enhance
production efficiency and reduce costs associated with energy,
raw materials, and labor.

7.1.2. Dimension control

Particle size and distribution are determined by the inherent
properties of drugs and the production process **°. At the nano-
scale, any deviation may alter the in vivo behavior of the product,
particularly for smaller particles *”’. Top-down methods, such as
wet milling, are commonly employed in industry to reduce
particle size to the nanometer range. However, this process often
necessitates extended processing times and may introduce metal
residues ‘. In contrast, nanoprecipitation, a bottom-up ap-
proach, can make nanoparticles with a narrow size distribution,
simple operation, and minimal equipment requirements. This
technique has the potential to produce nanoparticles with sizes
below 100 nm, which exhibit enhanced penetration into biofi-
Ims “*>**’. Nevertheless, the solute may undergo further precipit-
ation during the removal of the organic solvent ***. Additionally,
the selection and disposal of organic solvents are critical consid-
erations in this process.

The characterization of PDNs necessitates the establishment
of rigorous scientific methods and techniques. Light scattering
technology provides a means to measure particle sizes and zeta
potential without yielding morphological information *'" “"%. In
contrast, imaging techniques, such as scanning electron micro-
scopy (SEM), transmission electron microscopy (TEM), and
atomic force microscopy (AFM), enable the acquisition of data
pertaining to the morphology, surface properties, and other char-
acteristics of PDNs. However, these imaging methods are time-in-
tensive and require the sample to be dry, clean, and conduc-
tive '°. Furthermore, the number of samples that can be ob-
served is limited '”. The integration of light scattering and elec-
tron microscopy is widely accepted as a comprehensive ap-
proach to measuring the size and morphology of PDNs *’.

7.2. From the lab to the patient’s bedside

The annual approval rate of PDNs is disproportionately low
compared to the extensive patent filings. Furthermore, preclinic-
al efficacy findings for numerous PDNs demonstrate significant
discrepancies from clinical outcomes, occasionally yielding ad-
verse results. To effectively address these challenges, a compre-
hensive and profound understanding of the interactions between
PDNs and biological systems, the pathological mechanisms un-
derlying complex diseases (particularly cancer), and relevant eth-

ical considerations is imperative **.

7.2.1. Nanotoxicity

The examination of drug safety and toxicity remains a crucial
focus within the pharmaceutical industry. Approximately 20% of
nanoparticle failures in clinical trials are attributed to safety con-
cerns “**. During the decades of rapid development in PDNs, sci-
entists have made notable advancements in safety research and
the field of nanoparticle toxicology. However, persistent safety is-
sues continue to hinder the transition from laboratory to clinical
application ”°. Certain unique properties of PDNs can contribute
to toxicity. For instance, rod-shaped drug nanoparticles exhibit
prolonged retention times in systemic circulation compared to
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spherical drug nanoparticles "> **> *'. Furthermore, the surface

charge of PDNs influences their pharmacokinetic profile. Posit-
ively charged clarithromycin nanocrystals, for example, demon-
strated enhanced mucosal adhesion compared to uncharged and
negatively charged nanocrystals *"’. In single-layer CaCO-2 cells,
the charged nanocrystals exhibited superior drug transport effi-
ciency compared to uncharged nanocrystals. Additionally, the
toxicity of PDNs is dependent on the route of administration and
sites of accumulation. Inhaled PDNs may deposit in the trachea
and alveoli, potentially leading to inflammation, fibrosis, cyst
formation, and necrosis. Following intravenous injection, PDNs
may form protein coronas, which alter their surface properties
and influence their in vivo behavior *'**"*,

7.2.2. Limited understanding of disease pathology

Considering the potential benefits of PDNs to the social eco-
nomy, nanomedicine is vital in the successful transformation
from laboratory to product to solve human health problems, es-
pecially in oncology **’. Cancer is one of the most complex and dy-
namic human diseases, as its occurrence and development de-
pend on numerous variables **'. When the DNA sequence in a
normal cell mutates, cancer may develop. Sequencing the genom-
ic DNA of cancer cells facilitates the identification of genes that
drive and inhibit cancer, as well as the understanding of the role
of mutated genes in the disease ***. Sequencing also benefits the
discovery of oncogene blockers and the prediction of cancer de-
velopment “****, Although gene sequencing technology has made
significant advancements, its cost remains high, and not all genet-
ic mutations have been cataloged. Consequently, obtaining a com-
prehensive genomic DNA sequence that covers all human can-
cers remains an elusive goal.

In anti-tumor therapy, drug resistance often arises from mul-
tiple factors, including variations in drug targets, alterations in
cytopharmacology, and changes in local cancer physiology, either
individually or in combination *****°, Research on tumor drug
resistance primarily consists of static biological investigations.
Due to technological constraints, exposing tumor tissue is neces-
sary, which may pose potential risks to patients and raise ethical
concerns **’. Furthermore, the complex TME plays a crucial role
in tumor development, garnering increasing attention from re-
searchers ““***". The efficacy of many anti-tumor PDNs relies
heavily on the EPR effect. For instance, head and neck tumors and
Kaposi’s sarcoma exhibit robust EPR effects, making them pre-
ferred treatment targets “’°. However, notall tumor blood ves-
sels are leaky, and the EPR effect can vary over time within the
same patient or even within the same tumor **". Consequently,
not all anti-tumor PDNs can be successfully translated into clinic-
al practice.

Despite recent advancements, significant knowledge gaps re-
main regarding the evolution of the TME throughout cancer pro-
gression and treatment “*. For instance, the differences in TME
composition between various cancer types and the potential reg-
ulatory role of oncogene mutations on TME composition are
poorly understood ***. Additionally, the biological characteristics
and functions of non-malignant components within the TME war-
rant further investigation ***. Furthermore, the in vivo behavior of
PDNs is primarily studied in animal models, and their perform-
ance in human subjects remains largely unexplored “**. The devel-
opment of comprehensive animal models capable of profiling all
tumor types presents a significant challenge. Although several
preclinical and clinical studies investigated the pharmacokinetics
(PK) of nanotherapeutics across different species ****¥’, there is a
paucity of relevant cross-species data. Consequently, the safety
and efficacy of PDNs in humans cannot be reliably predicted
based on preclinical animal models **°.

7.2.3. Ethical supervision
Clinical trials require that investigators fully inform parti-
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cipants or their legal representatives about the study’s objectives,
potential risks, and benefits. However, issues often arise, includ-
ing misunderstandings about the experimental nature of treat-
ments, deliberate misrepresentation of risks, or overemphasiz-
ing the potential benefits ***. A particular challenge with PDNs is
the difficulty of monitoring long-term toxicity during early-stage
clinical trials (Phases I-I1I). Once PDN products are on the market,
unanticipated adverse effects or long-term side effects may
emerge. While the FDA encourages post-market studies to monit-
or such effects, it does not mandate them, which complicates long-
term safety evaluations. Another significant challenge is the high
cost of PDNs upon market entry, driven by the need to recover
R&D investments and protect intellectual property. These high
prices often result in healthcare inequities, as only those with
greater financial means can afford these cutting-edge treatments,
creating increased pressure on public health systems **’. A critic-
al ethical issue related to PDNs is the growing debate over "en-
hancement" versus "treatment" *’, While PDNs are developed for
therapeutic purposes, they also hold the potential to enhance hu-
man capabilities beyond the treatment of disease, blurring the
line between medicine and enhancement “’. The accessibility of
these enhancements is often dictated by wealth, allowing more
affluent individuals to gain competitive advantages that are un-
available to those with fewer resources. This imbalance not only
raises questions about fairness but also risks creating a societal
divide, where access to medical advancements reinforces exist-
ing inequalities and threatens social stability ““'.

8. Summary and Prospect

PDNs have been extensively employed in the diagnosis, pre-
vention, and treatment of diseases. Furthermore, novel PDN
products, developed through innovative technologies and creativ-
ity, are currently undergoing preclinical and clinical investiga-
tions. Drug nanocrystals, nanobodies, and ADCs are notable ex-
amples of PDNs. Drug nanocrystals with specific size and surface
properties demonstrate greater potential for delivering substan-
tial quantities of insoluble drugs to targeted sites within living or-
ganisms. However, the in vivo fate of drug nanocrystals remains
unclear. The in vitro dissolution tests inadequately simulate the in
vivo environment. For instance, AZ68 nanocrystals exhibited re-
duced solubility and dissolution rate compared to their amorph-
ous nanosuspensions '~ ***. Nevertheless, following intravenous
administration, they displayed similar PK performance. More-
over, according to the mononuclear phagocytic system hypothes-
is, drug nanocrystals with small particle sizes dissolved rapidly.
Drug nanocrystals with larger sizes and specific shapes were
transported by macrophages into the liver. After intravenous ad-
ministration, the transport of drug nanocrystals to the tumor site
may pose a significant challenge. Stabilizers were highly diluted
or formed protein corona in blood circulation, potentially weak-
ening the targeted ability of drug nanocrystals. Additionally, util-
izing standard top-down processes to reduce particle sizes below
100 nm presents a considerable challenge. DDCs enhanced the
physicochemical properties of drugs, including mechanical prop-
erties, hygroscopicity, stability, dissolution rate, and bioavailabil-
ity. Particularly for DDCs, the conformers possessed their own
pharmacological activity. The interaction between drugs and con-
formers complicated the study of the correlation between in vitro
properties and in vivo responses. For example, compared to free
GA, supramolecular GA-glutamic acid cocrystals exhibit stronger
binding to a-glucosidase ******. For DDCs, the study of transport,
distribution, and metabolism is often limited to free drugs. The
conformers frequently possess pharmacological activity and may
cause adverse effects. Furthermore, during cocrystal preparation,
contact with solvent leads to dissociation, crystal transformation,
and stoichiometric changes. This imposes stringent require-
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ments on scale-up techniques and the production of DDCs.

SAPDNPs, representing the next generation of PDNs, have
garnered increasing attention. Primarily prepared through nano-
precipitation, SAPDNPs present challenges for large-scale indus-
trial production. By incorporating functional molecules such as
fatty acids, polymers, cytotoxins, photothermic agents, and pep-
tides, SAPDNPs achieved targeted drug release and synergistic
therapy. Although SAPDNPs demonstrate great potential in can-
cer treatment, their exploration of other disease applications re-
mains limited. Research on SAPDNPs has primarily focused on
therapeutic effects, with minimal discussion of their assembly
mechanisms, hindering the development of suitable tools for
screening optimal SAPDNP formulations. Furthermore, the lack of
in vivo pharmacokinetic and toxicological data impeded their clin-
ical application and commercialization.

ADCs have achieved remarkable success in oncology therapy,
continuing to excite investors. However, selecting and optimizing
ADC modules, including targets, payloads, antibodies, and junc-
tions, is a complex and challenging process. Pharmaceutical com-
panies must also develop new modules beyond their existing pat-
ents, involving multiple production steps that lead to increased
complexity and costs. Nanobodies are expected to be an excellent
tool in tumor treatment and diagnosis, but their application in
other diseases requires further exploration. Moreover, faster and
simpler production techniques are needed to meet society’s de-
mand for nanobodies.

In summary, SDNCs are highly effective in enhancing the sol-
ubility of poorly soluble drugs, offering significant advantages
such as well-established manufacturing technology and support-
ive regulatory policies. DDCs are frequently employed as a com-
bination therapy approach, substantially improving drug efficacy
while minimizing side effects. DDCs are also extensively utilized
to enhance the oral bioavailability of insoluble drugs. Moreover,
SAPDNPs enable the co-delivery of multiple drugs without crys-
tal formation, exhibiting remarkable synergistic therapeutic be-
nefits for cancer treatment. Compared to ADCs, nanobodies pos-
sess unique characteristics, including small size, high stability,
high specificity, and low immunogenicity, making them favorable
for targeted therapy and in vivo imaging. However, the limited
utilization of nanobodies as therapeutic agents against diseases
may be attributed to the scarcity of preclinical and clinical re-
search and the absence of large-scale production capabilities. In
contrast, ADCs demonstrate promising potential for cancer treat-
ment, as the payloads in ADCs exhibit superior tumor cell-killing
efficacy compared to nanobodies. The cleavable conjugates can
more effectively respond to the pathological characteristics of tu-
mors and facilitate payload accumulation at the tumor site. Nev-
ertheless, numerous ADC resistance mechanisms are being iden-
tified, and bispecific ADCs designed to overcome drug resistance
have not yet achieved clinical application.
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