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[ABSTRACT] The spread of antibiotic-resistant bacteria and exhausted drug leads render some infections untreatable now and in the
future. To deal with these “new challenges”, scientists tend to re-pick up “old antibiotics”. Fusidane-type antibiotics have been known
for nearly 80 years as potent antibacterial agents against gram-positive bacteria, especially Staphylococci, and represent the only triter-
pene-derived antibiotic class in clinical setting. These attractive characteristics have drawn renewed attention on fusidane-type antibiot-
ics in recent decades. Isolation, characterization, biological evaluation, as well as chemical modifications of fusidane-type antibiotics
are increasingly being reported. Combinatorial biosynthesis of this type of antibiotics has been successfully utilized not only for elucid-
ating the biosynthetic pathways, but also for expanding their structural diversity. Some isolated and synthetic compounds exhibit com-
parable or even more potent biological activity than fusidic acid. This review provides an overview of progress on the studies of struc-
ture and  biology  of  fusidane-type  antibiotics  from  1943  to  April  2021.  The  informative  structure-activity  relationship  is  also  high-
lighted.
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Introduction

Antibiotics  (also  called  antibacterials)  belong  to  a  class
of  chemical  agents  that  treat  bacterial  infections [1].  These
chemicals either exert bactericidal effects through promoting
bacterial death, or possess bacteriostatic properties by simply
inhibiting the proliferation of bacteria [2-3]. The first antibiotic,
salvarsan,  was  chemically  synthesized  by  Paul  Ehrlich  and
clinically  introduced in  1910 [4].  The  discovery  of  the  best-
known  antibiotic  penicillin  from  the  fungus Penicillium
notatum in  1928 by Scottish  microbiologist  Fleming,  started
the  golden  age  of  antibiotic  discovery  that  flourished  in  the
mid-1950s [5-6].

Most  of  marketable  antibiotics,  which  can  be  separated
into  more  than  twenty  classes,  are  derived  from  natural
products,  especially  those isolated from microorganisms [7-8].
They have  dramatically  changed  modern  medicine  and  as-
sured human health [8].  However,  the  antibiotic  development
was  hindered  by  the  increasing  emergence  of  drug-resistant
microbes [9-11] and  rediscovery  of  known  natural  products  in
recent  decades [12-13]. To  cope  with  this  urgent  situation,  sci-
entists  pay  more  attentions  back  to  some  “old  antibiotics ”
with  intriguing  structural  features  and  excellent  biological
activity [14-16].

Fusidane-type antibiotics, which belong to a small group
of  fungal  29-nor protostane  triterpenoids,  have  been  known
for nearly 80 years (Fig. 1) [17]. They represent the only triter-
pene-derived  antibiotic  class [18].  In  this  antibiotic  group,
fusidic acid is the only one that has been applied for clinical
treatment [19-21].  More  importantly,  fusidane-type  antibiotics
are the only known antibiotics that selectively target bacterial
elongation factor G (EF-G) [22-23]. EF-G acts as an indispens-
able  translocase  during  protein  translation.  Once  fusidane-
type  antibiotics  bind  to  EF-G,  they  will  prevent  tRNA from
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translocating A site to P site on the ribosome and finally ter-
minate  elongation [24].  Therefore,  fusidane-type  antibiotics
have little cross-resistance with other commonly used antibi-
otics [25].

The intriguing structures,  remarkable antibacterial  activ-
ity,  and  unique  mode  of  action  of  fusidane-type  antibiotics
have aroused new interests  of  chemists  and biologists  in  the
increasing threat of antibiotic resistance. Natural occurrence,
combinational  biosynthesis,  and  chemical  modifications  of
fusidane-type  antibiotics  and  their  biological  activities  were
subsequently reported  in  recent  years,  facilitating  the  devel-
opment  of  this  “old  antibiotic  class”.  A number  of  research
articles  from June 1943 to  April  2021 were collected in  this
review, which  were  further  summarized  to  provide  an  over-
view  of  the  chemical  and  biological  properties  of  fusidane-
type antibiotics, including their isolation, recent combinatori-
al biosynthesis progress, and structural modifications. The in-
formative structure-activity relationship (SAR) was also high-
lighted at the end of this review. 

Structural Classification

Fusidane-type  antibiotics  are  fungal  29-nor protostane
triterpenoids  that  originate  from  (3S)-2,3-oxidosqualene
(Fig.  1) [26].  Their  skeletons  containing  a  special  chair-boat-
chair ABC-ring  system,  are  typically  featured  by  the  pres-
ence  of  an  acetoxy  group  at  C-16,  a Z-configured  double
bond between C-17 and C-20, a carboxylic acid at C-20, and
a ketone at C-3 (Fig. 1) [17]. Furthermore, oxidation, substitu-
tion, dehydrogenation,  or  even  cyclization  greatly  contrib-
utes  to  their  structural  diversity [17].  Helvolic  acid  (HA, 1),

cephalosporin P1 (CP, 2), and fusidic acid (FA, 3) are the rep-
resentative fusidane-type  antibiotics  and  well-known  as  po-
tent antibacterial agents against gram-positive bacteria, espe-
cially Staphylococci [27]. In this review, those secondary meta-
bolites are mainly classified according to the structural char-
acteristics  of  compounds 1−3 (Fig.  1).  Specifically,  they  are
broadly divided into three groups:  (i)  HA and its  derivatives
with a key carbonyl group at C-3 and oxidation at C-6 and C-
7; (ii) CP and its derivatives with a key hydroxyl group at C-3
and oxidation at C-6 and C-7; and (iii) FA and its derivatives
with a key hydroxyl group at C-3 and an important oxidation
at C-11. 

Naturally Occurring Fusidane-type Antibiotics

Many natural product chemists work on the isolation and
identification  of  fusidane-type  antibiotics  to  discover  more
biologically active compounds. Until now, many HA (1), CP
(2),  and  FA (3)  derivatives  with  diverse  chemical  structures
have  been  reported  from  diverse  fungi  (Table  1).  Some  of
them  displayed  comparable  or  even  more  potent  activities
than compound 1, 2, or 3 (Table 1). 

HA and its derivatives
HA (1), the first fusidane-type antibiotic, was isolated in

1943 from the  fungus Aspergillus  fumigatus [28].  The  correct
structure  of  HA  had  not  been  determined  until  1970 [59-63].
Ratnaweera et al. isolated HA from an endophytic fungus Xy-
laria sp., and reported its antibacterial activities against gram-
positive bacteria Bacillus subtilis with an MIC of 2.0 μg·mL−1

and  methicillin-resistant Staphylococcus  aureus (MRSA)
with an MIC of 4.0 μg·mL−1 [33]. Zhou [31] and Gao [32] groups
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Fig. 1    Fusidane-type antibiotics. (A) The key biosynthetic precursor (3S)-2,3-oxidosqualene; (B) the fusidane skeleton related to
29-nor protostane structure; (C) structural classification based on representative compounds helvolic acid (HA, 1), cephalospor-
in P1 (CP, 2), and fusidic acid (FA, 3) and their key structural characteristics (in red rectangles)
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Table 1    Fungi-derived and bio-transformed fusidane-type antibiotics and their activities

Compound Source Reported activities Reference

1

Aspergillus fumigatus
Aspergillus sydowi
Melia azedarach

Metarhizium anisopliae
Pichia guilliermondii

Xylaria sp.

1. MIC = 2.0 μg·mL−1 (S. aureus 209P)
2. MIC = 4.0 μg·mL−1 (MRSA)

3. MIC = 2.0 μg·mL−1 (B. subtilis)
4. MIC = 49.94 μg·mL−1 (E. coli)

5. MIC = 6.24 μg·mL−1 (M. lysoleikticus)
6. MIC = 8.0 μg·mL−1 (S. agalactiae)

7. MIC = 10.0 μg·mL−1 (fungi)
8. IC50 = 3.69 μg·mL−1 (NF-κB)

[28-36]

2
Cephalosporium sp.
Cladosporium sp.

Hapsidospora irregularis

1. MIC = 0.06 μg·mL−1 (S. aureus 209P)
2. MIC = 8.0 μg·mL−1 (MRSA)
3. Chlorosis-inducing activities

[27,37-40]

3

Fusidium coccineum
Mucor ramannianus

Cephalosporium lamellaecula
Paecilomyces fusidioides
Epidermophyton floccosum
Acremonium pilosum

1. MIC = 0.004 μg·mL−1 (S. aureus 209P) [41-45]

4 Metarhizium anisopliae
1. MIC = 16 μg·mL−1 (S. aureus 209P)

2. IC50 = 1.54 μg·mL−1 (NF-κB) [29, 35-36]

5 Aspergillus sydowi
1. MIC = 6.24 μg·mL−1 (E. coli)

2. MIC = 3.12 μg·mL−1 (B. subtilis)
3. MIC = 6.24 μg·mL−1 (M. lysoleikticus)

[30]

6−12 Aspergillus fumigatus
1. MIC = 16 μg·mL−1 for 6 (S. agalactiae and S. aureus)
2. MIC ≥ 2 μg·mL−1 for 7 (S. agalactiae and S. aureus)

3. MIC ≥ 64 μg·mL−1 for others (S. agalactiae)
[34]

13 Aspergillus sp. No observed antibacterial activity [46]

14−16 Aspergillus terreus
1. MIC = 6.25 μg·mL−1 for 14 (S. aureus)
2. MIC = 6.25 μg·mL−1 for 15 (S. aureus) [35]

17−19 Cladosporium sp. Chlorosis-inducing activity [39, 47-48]

20−23
Hapsidospora irregularis

Biotransformation by Microbacterium oxydans

1. MIC = 2 μg·mL−1 for 20 (S. aureus 209P)
2. MIC = 16 μg·mL−1 for 21 (S. aureus 209P)
3. MIC = 2 μg·mL−1 for 22 (S. aureus 209P)
4. MIC = 32 μg·mL−1 for 23 (S. aureus 209P)

5. MIC = 4.0 μg·mL−1 for 22 (S. aureus)
6. MIC = 8.0 μg·mL−1 for 22 (MRSA)

[27, 40]

24−31 Fusidium coccineum
1. MIC = 0.25 μg·mL−1 for 24 (S. aureus 209P)

2. MIC = 8 μg·mL−1 for 26 (S. aureus 209P) [45, 49]

32 Epidermophyton floccosum Not reported [43]

33 Acremonium crotocinigenum MIC = 16 μg·mL−1 (MRSA) [50]

34 Acremonium pilosum No antibacterial activity [51]

35−39 Biotransformation by Cunninghamella echinulata

1. MIC = 2.5 μg·mL−1 for 35 (S. aureus)
2. MIC = 2.5 μg·mL−1 for 37 (S. aureus)
3. MIC ≥ 100 μg·mL−1 for 38 (S. aureus)
4. MIC = 1000 μg·mL−1 for 39 (MRSA)

[52-53]

40, 41 Biotransformation by Cunninghamella elegans
1. MIC = 2.5 μg·mL−1 for 40 (S. aureus)
2. MIC = 2.5 μg·mL−1 for 41 (S. aureus) [54]

42−44 Biotransformation by Acrocylindrium oryzae Not reported [55]

45 In man No antibacterial activity [56]

46 Biotransformation by Streptomyces lividans
MIC = 5.0 μg·mL−1 (Micrococcus luteus IFM 2066)

MIC = 2.5 μg·mL−1 (B. subtilis PCI 189) [57-58]

47 Biotransformation by Nocardia brasiliensis
MIC = 660 μg·mL−1 (M. luteus IFM 2066)
MIC ≥ 660 μg·mL−1 (B. subtilis PCI 189) [58]
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obtained  HA  from  two  fungal  endophytes Pichia  guillier-
mondii and Melia  azedarach. The  antifungal  bioassay  re-
vealed  that  HA  strongly  inhibited  seven  phytopathogenic
fungi  with  MIC  values  around  10.0  μg·mL−1,  which  were
comparable to the positive control carbendazim.

Chemical  investigation  on  an  entomopathogenic  fungus
Metarhizium anisopliae HF293 led to the isolation of HA and
its new derivative, 1,2-dihydrohelvolic acid (4) (Fig. 2). Both
compounds  showed  inhibitory  activity  against S.  aureus [29].
A  new  HA  derivative,  6β,16β-diacetoxy-25-hydroxy-3,7-di-
oxy-29-nordammara-1,17(20)-dien-21-oic  acid  (5),  along
with HA was acquired from a marine-derived fungus Asper-
gillus sydowi [30]. New analog 5 exhibited antimicrobial activ-
ity  against Escherichia  coli, B.  subtilis,  and Micrococcus
lysoleikticus (MIC  =  10.65,  5.33,  and  10.65  μmol·L−1, re-
spectively),  which was  more  potent  than HA (MIC = 87.92,
21.98, and 10.99 μmol·L−1, respectively).

Seven  new  HA  derivatives  (6−12)  (Fig.  2) were  identi-
fied  from a  marine-derived  fungus Aspergillus  fumigatus by
Kong et al. in 2018 [34]. Among them, 16-O-propionyl-16-O-
deacetylhelvolic  acid (6),  6-O-propionyl-6-O-deacetylhelvol-
ic acid (7), as well as HA showed stronger antibacterial activ-
ity  than  a  positive  control  tobramycin  against  a  hazardous
pathogen Streptococcus agalactiae. A new HA analog 6β,16β-
diacetoxy-25-hydroxy-3,7-dioxo-29-nordammara-1,17(20)-
dien-21,24-lactone  (13)  was  also  discovered  from  a  marine
Aspergillus species, without antibacterial effect [46].

Recently, four HA analogs maunakeanolic acids A and B
(14 and 15)  (Fig.  2),  6-deacetyl-1,2-dihydrohelvolic  acid

(16),  and 1,2-dihydrohelvolic  acid  (4),  along with  HA,  were
isolated  from  a  soil-derived A.  terreus [35].  New  compounds
14 and 15 were more potent against S. aureus (MICs of 6.25
and  6.25  μg·mL−1)  than 16 and  HA.  In  addition,  HA  and 4
showed  significant  inhibitory  activity  against  NF-κB  with
IC50 values of 2.7 and 6.5 μmol·L−1, respectively [35]. 

CP and its derivatives
CP (2) was first isolated in 1951 from a species of Ceph-

alosporium [37-38]. Its name is a little confusing because its 29-
nor protostane triterpenoid structure is not related to the well-
known β-lactam antibiotics  cephalosporins.  Its  correct  struc-
ture was finally established in 1967 [60, 64].

In  1972,  Kaise  and  Munakata  reported  the  isolation,
identification, and chlorosis-inducing activity of CP and three
new  derivatives  viridominic  acids  A-C  (17−19)  from Cla-
dosporium sp. 501-7Y (Fig. 3) [39, 47-48]. Compounds 17 and 18
showed  ten-fold  higher  chlorosis-inducing  activity  against
higher  plants  than  CP,  and  around  one  hundred-fold  higher
than compound 19 [47]. CP and isocephalosporin P1 (20) (Fig. 3)
were  produced  by  the  fungus Hapsidospora  irregularis
FERM  BP-2511 [40].  Further  biotransformation  of  CP  and
compound 20 by Microbacterium oxydans CGMCC 1788 led
to  the  discovery  of  three  new  derivatives  3-keto-isoceph-
alosporin  P1 (21),  3-keto-cephalosporin  P1 (22),  and  6-
deacetyl-3-ketocephalosporin P1 (23) (Fig. 2). Compound 22
showed  comparable  or  even  higher  antibacterial  activity
against S.  aureus with a  MIC value of  4.0 μg·mL−1 than the
parent natural products [40]. CP and 22 also exhibited antibac-
terial activity against MRSA with the same MIC value of 8.0
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μg·mL−1. 

FA and its derivatives
FA  (3)  was  characterized  by  Godtfredsen et  al.  from

Fusidium coccineum in 1962 later than HA and CP [41].  This
molecule  was  reported  to  be  produced  by Mucor  ramanni-
anus, Cephalosporium  lamellaecula, Paecilomyces  fusi-
dioides,  and Epidermophyton  floccosum  [42-43].  The  planar
structure and stereochemistry of FA were assigned in 1965 by
Godtfredsen et  al. [65], and  then  confirmed  by  X-ray  diffrac-
tion by Cooper  group in  1966 [66] and 1968 [67].  Rastrup-An-
dersen  and  Duvold  reassigned  the 1H  and 13C  NMR  data  of
FA, and several derivatives [68]. Since it started to be used for
clinical  treatment  in  1962,  FA  has  been  extensively  used  to
deal with Staphylococcal infections in human [44].

Further  chemical  investigations  on F. coccineum
provided  some  derivatives  of  FA  (Fig.  4) [49]:  3-ketofusidic
acid  (24),  11-ketofusidic  acid  (25),  3-epifusidic  acid  (3β-hy-
droxylfusidic  acid, 26),  11-epifusidic  acid  (27),  9,11-anhyd-
rofusidic  acid  (28),  9,11-anhydro-9α,11α-epoxyfusidic  acid
(29),  7,8-dehydropseudofusidic  acid  (30),  and 9,11-anhydro-
12-hydroxy-fusidic  acid  (31).  From Epidermophyton  floc-
cosum,  3,11-diketofusidic  acid  (32) was  isolated  and  identi-
fied [43].  A new FA analog,  16-deacetoxy-7-β-hydroxy-fusid-
ic  acid  (33)  with  a  rare  hydroxyl  group  at  C-7  and  without

substitution  at  C-16,  was  isolated  from  a  mitosporic  fungus
Acremonium crotocinigenum [50]. It exhibited inhibitory activ-
ity against MRSA with an MIC value of 16 μg·mL−1. Recen-
tly, our research group reported the chemical investigation on
an  endophytic  fungus, Acremonium  pilosum F47 [51, 69].  FA
and a new derivative, acremonidiol A (34) (Fig. 4), were isol-
ated and characterized. Only FA showed strong inhibitory ef-
fect on gram-positive bacteria S. aureus and B. subtilis, sug-
gesting the importance of motifs at C-11, C-16, and C-21.

In order to obtain more FA derivatives, the biotransform-
ation approach was frequently utilized, which provided vari-
ous  chemical  modifications  on  original  molecules,  such  as
hydroxylation.  Biotransformation  of  FA by Cunninghamella
echinulata NRRL 1382 converted FA into four major second-
ary  metabolites  27-hydroxyfusidic  acid  (35),  26-hydroxy-
fusidic acid (36), 26-formylfusidic acid (37), and 26-carboxy-
fusidic  acid  (38)  (Fig.  5) [52],  and  a  minor  metabolite  3-O-
formyl-27-hydroxyfusidic  acid  (39) [53].  Compared  with  FA,
the obtained products showed significantly weaker antimicro-
bial  activity  against  different  gram-positive  and  gram-negat-
ive  bacteria.  These  observations  indicated  that  the  methyl
groups at  C-26 and C-27 in the side chain of FA are crucial
for  antimicrobial  activity [52-53].  Another C.  elegans NRRL
1392  mediated  the  hydroxylation  of  ring  B  to  yield  7-β-hy-
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droxyfusidic  acid  (40)  and  6-β-hydroxyfusidic  acid  (41) [54].
Similar to that of 35 and 37, compounds 40 and 41 exhibited
lower efficiency in antibacterial activity than FA, suggesting
that  the  hydroxylation  of  ring  B  diminished  the  biological
activity [54].

Greenspan and Alburn discovered that Corynebacterium
simplex mediated the oxidation of C-3 of FA and identified a
crystalline product  3-ketofusidic acid (24) [70].  Similarly, Ac-
rocylindrium oryzae induced the oxidation of C-6 and/or C-7,
affording  6-oxofusidic  acid  (42),  6-hydroxy-fusidic  acid
methyl  ester  (43),  and  6-oxo-7-hydroxyl-fusidic  acid  methyl
ester  (44)  (Fig.  5) [55]. FA was  also  observed  to  be  metabol-
ized  into  inactive  dicarboxylic  metabolite  (38) [56],  glucur-
onide derivative (45) [56], and 3-keto product (24) in human [71].

Antibiotic-resistant bacteria  can  inactivate  FA by  modi-
fying its  structure [72]. For example,  Von der  Haar and Schr-
empf isolated an extracellular enzyme from a wild-type strain
S. lividans 66 [57].  This  enzyme  was  found  to  inactivate  FA
through  removing  the  acetyl  group  at  C-16  and  forming  the
lactone between C-16 and C-21 (46) (Fig. 5) [57]. Harada et al.
described the inactivation of FA by Nocardia brasiliensis. In-
active  FA  lactone  (46)  and  7α-hydroxylatedfusidic acid  lac-
tone (47) were successfully isolated and identified [58]. 

Combinational  Biosynthesis  of  Fusidane-Type
Antibiotics

The development  of  microbial  genomics,  bioinformatics
and  analytical  techniques  helps  understand  natural  product
biosynthesis, which inspire us to rationally manipulate natur-

al biosynthetic machinery to increase chemical diversity [73-74].
The biosynthetic studies  of  fusidane-type  antibiotics  flour-
ished  after  the  characterization  of  HA  biosynthetic  gene
cluster (BGC) from A. fumigatus Af293 in 2009 [75-76]. So far,
three  biosynthetic  pathways  of  representative  fusidane-type
antibiotics,  HA (1) [36],  CP (2) [27],  and FA (3) [45] have been
investigated and proposed. 

Six conserved genes for yielding fusidane skeleton
The genomes  of  fusidane  producing  fungi  were  se-

quenced,  which  indicated  the  presence  of  biosynthetic  gene
clusters  (BGCs)  responsible  for  fusidane-type  antibiotics
(Table 2) [77]. Their BGCs had six conserved enzymes includ-
ing an oxidosqualene cyclase (OSC), three cytochrome P450
enzymes  (P450),  a  short-chain  dehydrogenase/reductase
(SDR),  and  an  acyltransferase  (AT) [77].  The  core  enzymes
catalyzed an early stage of biosynthetic pathway which trans-
formed  the  (3S)-2,3-oxidosqualene  to  fusidane  skeleton
(Table 2 and Fig. 6) [36]. OSC catalyzed the cyclization of (3S)-
2,3-oxidosqualene to establish a common tetracyclic interme-
diate  (17Z)-protosta-17(20),24-dien-3β-ol  (protostadienol,
48)  (Table  2 and Fig.  6) [75-76].  Then,  P450-1  oxidized  the
methyl at C-4β to carboxylic acid (49).  P450-2 mediated the
hydroxylation  at  C-16  (50).  The  acetylation  of  C-16β hy-
droxyl group (51) was further triggered by AT-1. P450-3 was
responsible for converting methyl group at C-21 to carboxyl-
ic  acid (52).  The C-4β methyl  group of  intermediate 52 was
finally removed by SDR-1 through a unique decarboxylation
mechanism, constructing the fusidane skeleton (53)  (Table 2
and Fig. 6) [78]. 
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Further tailoring genes for constructing HA, CP, and FA
Further tailoring steps increase the diversity of fusidane-

type structures.  For HA (Fig. 7),  P450 enzyme HelB3-medi-
ated dual oxidation at C-6 and C-7 (54),  AT HelD1-depend-
ent  acetylation  of  6-OH  (4), and  dedydrogenase  HelE  cata-
lyzed  dehydrogenation  between  C-1  and  C-2  and  provided

the final product HA (1) [36-76]. During the biosynthesis of FA
(Fig.  7), the  carbonyl  group at  C-3  was  stereoselectively  re-
duced  to  3α-OH  (55) by  SDR  enzyme  FusC1,  and  the  hy-
droxylation  at  C-11  was  achieved  by  P450  monooxygenase
FusB1 [45].  It  has  to  be  noted  that helD1 and helE exhibited
broad  substrate  specificities.  This  is  also  true  for fusB1 and

 
Table 2    The genes in BGCs responsible for the biosynthesis of fusidane-type antibiotics

Putative functions
Genes in BGCs

HA (1)
(A. fumigatus Af293)

CP (2)
(A. chrysogenum ATCC 11550)

FA (3)
(A. fusidioides ATCC 14700)

Oxidosualene cyclase (OSC) helA cepA fusA

Cytochrome P450 (P450-1) helB1 cepB1 fusB4

Cytochrome P450 (P450-2) helB2 cepB3 fusB2

Cytochrome P450 (P450-3) helB4 cepB2 fusB3

Cytochrome P450 (P450-4) helB3 cepB4 fusB1

Short-chain dehydrogenase/reductase (SDR-1) helC cepC1 fusC2

Short-chain dehydrogenase/reductase (SDR-2) - cepC2 fusC1

Acyltransferase (AT-1) helD2 cepD1 fusD

Acyltransferase (AT-2) helD1 cepD2 -

3-Ketosteroid-Δ1-dedydrogenase (KSTD) helE - -
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Fig. 6    Six conserved enzymes for yielding fusidane skeleton (53)
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fusC1 which  worked  independently  without  a  strict  reaction
order.  In  the  biosynthesis  of  CP  (Fig.  7),  additional  three
genes in a separate locus encoding P450 enzyme (CepB4), an
AT protein  (CepD2),  and  a  SDR enzyme (CepC2),  were  re-
quired [27]. CepB4 worked on stereoselective dual oxidation of

C-6 and C-7 (23 or 56), and CepD2 specifically catalyzed the
acetylation of 6-OH (22). CepC2 showed high sequence iden-
tity to FusC1 and stereoselectively reduced 3-keto to 3α-OH [27]. 

Combinational biosynthesis to expand the structural diversity
During stepwise reconstitution of HA biosynthesis in the
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Fig. 7    The biosynthetic pathways of HA (1), CP (2), and FA (3)
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heterologous  expression  system A.  oryzae NSAR1,  21  HA
derivatives  (4, 48−54, 57−69)  were  isolated  by  Yao  group
(Figs. 6−8) [36]. Three of them (54, 66, and 69) exhibited more
potent inhibitory activity against S. aureus (0.5−1.0 μg·mL−1)
than  orginal  HA  (1)  (2.0  μg·mL−1)  (Tables  1 and 3).  This
work  showed  the  potential  of  combinatorial  biosynthesis  to
generate HA analogs  with  much better  bioactivities.  The  in-
vestigation on combinatorial biosynthesis of CP provided 11
analogs  (20−23, 55, 56,  and 70−74)  (Figs.  3, 7,  and 8) [27].
Most  of  them  exhibited  antibacterial  activity  against  gram-
positive S.  aureus,  and  CP  showed  the  most  potent  activity
with a MIC value of 0.06 μg·mL−1 (Tables 1 and 3). Besides,
the results of bioassay gave out that the antibacterial activity

of  CP  related  molecules  was  mainly  dependent  on  acetyl
groups at C-6 or C-7 [27]. FA and its three analogs 24, 26, and
55 (Fig. 4 and 7), were obtained during the heterologous ex-
pression of FA in A. oryzae NSAR1 [45]. FA (3) displayed the
best antibacterial activity against S. aureus 209P with a MIC
value  of  0.004  μg·mL−1 compared  with  the  positive  control
tobramycin  (MIC  =  0.06  μg·mL−1)  (Tables  1 and 3) [45].
Moreover, the MIC values of compounds 24, 26, and 55 were
0.25, 8, and 0.25 μg·mL−1, respectively. These results sugges-
ted that 3α-OH and 11α-OH played an important role on the
antibiotic activity of FA. More recently,  Yao and colleagues
introduced  all  the  possible  combinations  of  post-tailoring
genes from HA, FA, and CP BGCs into the strain that had six
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conserved  genes [79].  This  stochastic  combinational  strategy
provided  24  combinations  that  produced  58  fusidane-type
analogs,  of  which  54  were  new  compounds  (75−128) [79].
Their antibacterial activity was evaluated as shown in Table 3,
and SAR was further analyzed by the authors. 

Chemical Modifications of Fusidane-Type Antibi-
otics

FA  exhibits  excellent  antibiotic  activity in  vitro and in
vivo with low degree of toxicity, and shows little cross-resist-
ance  with  other  clinically  used  antibiotics.  Until  now,  only
FA has been applied to clinical treatment. In order to explore
more effective analogs, scientists try to acquire diverse fusid-
anes through chemical modification (Fig. 9). Hundreds of FA
derivatives  have  been  synthesized,  and  their  antibacterial,
cytotoxic,  antiplasmodial,  and  antimycobacterial  activities
were  evaluated in  vitro or in  vivo. The  SAR of  FA was  ex-
tensively investigated. 

Synthesis of the tricyclic or tetracyclic ring system
A  number  of  synthetic  strategies  have  been  reported  to

construct  the  cyclic  ring  system of  fusidane-type  antibiotics.

This ring system can be easily prepared from a bicyclictriene
ether  through  an  effective  bicyclic  transannular  Diels-Alder
reaction  (Fig.  10A) [80]. An  intermolecular/transannular  Mi-
chael reaction cascade on a ten-membered carbocyclic ketone
was  also  developed  to  stereoselectively  prepare  the  tricyclic
system (Fig. 10B) [81]. Ireland group reported the synthesis of
several tetracyclic intermediates through a series of reactions
on corresponding polycyclic precursors [82-83].

Dauben group  first  reported  the  total  synthesis  of  a  de-
gradation  tetracyclic  product  of  FA  (129)  (Fig.  10C) [84].  Its
tetracyclic  skeleton  was  successfully  constructed  through  a
key Westphalen rearrangement reaction that involved an acid-
catalyzed  rearrangement  of  an  angular  methyl [84]. The  syn-
thetic  tetracyclic  structure  and  stereochemistry  of 129 was
confirmed by X-ray crystallography. Another BF3·Et2O-cata-
lyzed  rearrangement  of  3-oxo-4β-demethyllanostane-9α,11α-
epoxide also led to the formation of a chair-boat-chair skelet-
on [85]. The above tetracyclic skeleton was further utilized for
the partial synthesis of FA (3) in 21 steps, affording a triacet-
ate  product [86].  The  obtained  triacetate  product  (Fig.  10C)
was  highly  similar  to  that  of  FA,  except  for  the  side  chain,
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and served as a key intermediate for the final  total  synthesis
of FA. Further introduction of the 6-methyl-5-heptenoic acid
side  chain  to  the  C-17  ketone  was  achieved  by  Tanabe  and
co-workers,  and  several  FA  derivatives  including  the  met-
hyl  ester  of  diacetoxyfusidic  acid  (130),  were  obtained
(Fig. 10C) [87]. Even though these synthetic methods success-
fully constructed the chair-boat-chair ring system or core stru-
cture,  existing  reaction  processes  were  relatively  time-con-
suming  (Fig.  10C). In  addition,  until  now,  there  are  no  re-
ports  for  the  total  synthesis  of  fusidane-type  antibiotics,
especially HA (1), CP (2), and FA (3). More convenient and
environmentally friendly total synthetic approaches might be
needed to  obtain  diverse  fusidane-type  antibiotics  in  the  fu-
ture. 

Early SAR investigation based on diverse substitutions at C-
3, C-11, C-16, and C-21

The  SAR  of  FA  has  been  extensively  studied  by
Godtfredsen group [88-90].  A variety of FA analogs have been
prepared and evaluated for their antibacterial activity against
a  number  of  bacteria,  such  as S.  aureus CC  178B  and
Corynebacterium xerosis NCTC 9755 (Fig. 11 and Table 4).
Certain modifications, such as saturation of the 24,25-double

bond  (131),  replacement  of  the  16β-acetoxyl group  by  vari-
ous other groups (132−140), and conversion of 11α-hydroxyl
group  into  ketone  (25),  11β-hydroxyl  group  (141),  or  11α-
acetoxyl motif (142), had limited effect on antibacterial activ-
ity.  Other  modifications  at  3-OH  (143−146)  and  21-COOH
(147−150)  positions  reduced  the  activity.  It  has  to  be  noted
that among  these  synthesized  FA  derivatives,  only  com-
pounds 132 and 140 were  more  active  than  original  FA  (3)
(Fig. 11 and Table 4). 

Modifications of double bonds at C-17 and/or C-24
In order to investigate the importance of the double bond

between C-17 and C-20, Duvold and co-workers synthesized
four  17,20-dihydrofusidic  acid  derivatives  (Fig.  12),  17R,
20S-tetrahydrofusidic  acid  (151),  17R,20R-tetrahydrofusidic
acid (152),  17S,20R-dihydrofusidic acid (153),  and 17S,20S-
dihydrofusidic  acid  (154).  Their  antibacterial  activities  were
investigated  with  the  aid  of  molecular  modeling [91].  Only
compound 154 with a similar stereo conformational space as
that  of  FA,  showed the  same antibiotic  activity  as  FA while
others were virtually inactive [91]. These results indicated that
the  Δ17(20)  double  bond  was  not  crucial  for  the  antibact-
erial  activity  of  FA,  while  the  orientation  of  the  carboxyl

 
Table 3    Fusidane-type antibiotics from combinational biosynthesis and their anti-Staphylococcus activity a

Compd.
S. aureus 209P

(MIC, μg·mL−1)
Compd.

S. aureus 209P
(MIC, μg·mL−1)

Compd.
S. aureus 209P

(MIC, μg·mL−1)
Compd.

S. aureus 209P
(MIC, μg·mL−1)

48 > 128 69 0.5 90 16 111 16

49 > 128 70 32 91 1 112 8

50 32 71 1 92 128 113 8

51 64 72 8 93 8 114 128

52 64 73 4 94 32 115 > 128

53 2 74 0.5 95 32 116 128

54 1 75 16 96 > 128 117 128

55 0.25 76 32 97 > 128 118 16

56 8 77 128 98 > 128 119 4

57 128 78 16 99 > 128 120 32

58 > 128 79 > 128 100 > 128 121 2

59 > 128 80 64 101 > 128 122 64

60 > 128 81 32 102 32 123 128

61 16 82 > 128 103 128 124 64

62 32 83 128 104 16 125 128

63 > 128 84 > 128 105 16 126 4

64 > 128 85 32 106 64 127 > 128

65 8 86 8 107 16 128 128

66 1 87 128 108 64 Tobramycin 0.03

67 32 88 16 109 8 FA (3) 0.125

68 32 89 2 110 32 CP (2) 0.5

a Compounds 75−128, tobramycin, FA (3), and CP (2) were evaluated for their antibacterial activity at the same time [79].
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group  and  the  lipophilic  moiety  on  the  side  chain  must  be
similar to that of FA. In order to reduce conformational free-
dom [91],  Duvold and co-workers further  constructed a spiro-
cycloproane  ring  between  C-17  and  C-20  to  afford  two
products  (155 and 156) [92].  Only  synthetic  17S,20S-meth-
anofusidic  acid  (155) had  a  limited  conformational  orienta-
tion of side chain and carboxyl group [92]. As expected, it ex-
hibited  significant  antibacterial  activity  which  was  equal  to
FA.

Duvold group  also  focused  on  the  modification  of  lipo-
philic part of the side chain and prepared three photoaffinity
labeled FA derivatives (Fig. 12), benzophenone FA (157), tri-
fluoromethyldiazirine  FA  (158),  and  azide  FA (159) [93].
These photoaffinity labeled compounds retained partial activ-
ity against six FA-sensitive Staphylococcus species with MIC
values ranging from 1 to 4 μg·mL−1 compared with FA (MIC,
around 0.063 μg·mL−1), and were  valuable  tools  to  investig-
ate the active sites interacted with FA in EF-G. Wu et al. pre-
pared a hydrogenated derivative of FA, 24,25-dihydrofusidic
acid  (131) [94].  Both  FA  and 131 exhibited  equal  inhibitory
activity  against  gram-positive  bacteria,  and  showed  strong
anti-inflammatory effects in vivo [94]. These results suggested
that the double bond between C-24 and C-25 had little effect
on the improvement of FA activity. 

Structural modifications at C-3 and/or C-21 

Increasing the metabolic stability
The half-life  of  FA in blood is  less than 2 hours,  which

dramatically reduce  the  drug  effect  of  FA  in  clinical  treat-
ment [95]. The metabolism of FA and its C-3 or C-21 derivat-
ives was investigated in rat liver microsomes, rat plasma, and
mycobacterial  cell  culture [96].  FA  (MIC99 <  0.15  μmol·L−1)
was metabolized to the corresponding 3-ketofusidic acid (24,
MIC99 1.25 μmol·L−1) and 3-epifusidic acid (26,  MIC99 11.4
μmol·L−1)  with  a  relatively  weak  anti-Mtb activity. Mean-
while,  FA  was  transformed  into  inactive  FA  lactone  (46)  in
rat plasma. C-3 alkyl and aryl esters were hydrolyzed to FA,
while C-3 silicate esters and C-21 aryl esters were stable [96].
Three stable C-3 silicate esters (Fig. 13), 3-triethoxysilyloxy-
fusidic  acid  (160),  3-triisopropoxysilyloxyfusidic  acid  (161),
3-trisoctyloxysilyloxyfusidic  acid  (162),  showed  comparable
antimycobacterial activity as FA [96]. Representative C-21 aryl
ester 163 with  weak  activity  possessed  longer  half-life  than
FA.  Interestingly,  the  FA  C-3  alkyl  ester  prodrugs,  FA
butanoate (164) and FA pentanoate (165), were found to have impro-
ved bioavailability and tissue distribution compared with FA
in  pharmacokinetic  and  organ  distribution  experiments [97].
Based on these  data,  stable  C-3 silicate  esters  and C-3 alkyl
ester  prodrugs  may  become  potential  drug  leads  for  further
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chemical and biological investigation.
In order to maintain antibacterial activity and prolong the

half-life  at  the  same  time,  Bi  group  blocked  the  metabolic
sites of FA at C-3 and C-21 and obtained 14 related derivat-
ives [95].  Among them, compounds 166−171 (Fig.  13) exhib-
ited  significant  or  moderate  antibacterial  activity  against S.
aureus and  longer  half-life.  Particularly,  two  C-21  modified
derivatives  with  the  same  MIC  values  (less  than  0.25
μg·mL−1)  as  FA,  21-fusidic  acid  (6-chloro-benzotriazole-1)
ester  (170)  and  21-fusidic  acid  (7-azabenzotriazole-1)  ester
(171),  showed  longer  half-life  than  FA.  Both  of  them  were

transformed into FA through hydrolysis in vivo [95]. These res-
ults  indicated  that  blocking  the  metabolic  sites  of  FA  (21-
COOH and/or 3-OH) can maintain all or partial antibacterial
activity and prolong the half-life of FA. 

Antitumor or antifungal derivatives
As  C-21-fusidic  acid  benzyl  esters  exhibited  improved

antibacterial activity  and  half-life,  Bi  group  further  intro-
duced different amino-terminal groups at C-3, and obtained a
series of novel FA derivatives [98]. 3β-(4-Aminopropionyloxy)-
21-fusidic acid (benzyl) ester (172) (Fig. 14) with a 4-amino-
propionyloxy  group  at  3-OH  showed  cytotoxic  activity
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against  a  panel  of  cancer  cell  lines  with  IC50 values  ranging
from  1.25  to  3.57  μmol·L−1 in  vitro,  and  exhibited
anti-tumor activity against a xenograft tumor of Hela cells in
vivo [98]. Further synthesis and antifungal evaluation of FA de-
rivatives  possessing a  C-3 amino-terminal  group and a  C-21
benzyl moiety were also carried out by Bi group [99]. New FA
derivatives had antifungal activity against Cryptococcus neo-
formans, which  is  a  HIV-related  opportunistic  fungal  patho-
gen.  3β-Lysine-21-fusidic  acid  (benzyl)  ester  (173)

(Fig. 14) showed the strongest antifungal activity with a MIC
value of 4.0 μg·mL−1 [99], while FA did not inhibit the growth
of C. neoformans at a concentration of 32 μg·mL−1. The ben-
zyl substituent at 21-COOH and amino acyl substitution at 3-
OH made  the  FA  derivatives  become  cytotoxic  and  anti-
fungal molecules. The data also highlighted the importance of
medium-length amino-terminal groups at C-3.

Eighteen 3-amino substituted FA derivatives,  containing
linear,  aromatic,  heterocyclic,  and  polyamine  substituents,
were  synthesized  by  Salimova  and  co-workers [100]. Derivat-
ives  substituted  at  C-3  by  pyrrolidine  (174), n-butylamine
(175),  and benzylamine (176)  (Fig.  14) showed selective in-
hibitory  effect  against  leukemia  cell  lines  at  10  μmol·L−1,
highlighting the cytotoxic potential of 3-amino derivatives of
FA [100]. 

Antiplasmodial derivatives
FA  exhibited  inhibitory  activity  against  chloroquine-

sensitive Plasmodium falciparum NF54 with an IC50 value of
59  μmol·L−1 and  multidrug-resistant P.  falciparum K1  with
an IC50 value of 19 μmol·L−1 [101-103]. Chibale group synthes-
ized  19  FA  derivatives  by  substituting  the  21-COOH  group
with  three  types  of  bioisosteres,  obtaining  compounds 177,
178, and 179 (Fig. 15) [102]. Most of them possessed antiplas-
modial  effect  on  chloroquine-sensitive P.  falciparum NF54
with  a  2-35  fold  increase  in  activity  as  compared  to  FA
(Table  5).  Compound 179,  a  3-substituted-1,2,4-oxadiazole
derivative,  had  a  similar  EF-G  binding  orientation  as  FA,
and  was  the  most  active  one  with  an  IC50 value  of  1.7
μmol·L−1 [102].  Further  replacement  of  the  carboxylic  acid
group at C-21 with various ester and amide moieties provided
25 FA derivatives [103]. Most of them exhibited stronger anti-
plasmodial activity against chloroquine-sensitive P. falcipar-

 
Table 4    Antibacterial activities of the representative FA de-
rivatives investigated by Godtfredsen group

No.
IC50 (μg·mL−1)

No.
IC50 (μg·mL−1)

S. aureus
CC 178B

C. xerosis 
NCTC 9755

S. aureus 
CC 178B

C. xerosis 
NCTC 9755

1 1.5 0.047 139 1.6 0.16

2 0.19 0.068 140 0.032 0.005

3 0.058 0.008 141 25.0 4.0

25 0.05 0.004 142 6.3 0.13

131 0.071 0.009 143 0.79 0.01

132 0.013 0.002 144 2.0 0.05

133 0.79 0.04 145 6.3 0.1

134 1.6 0.079 146 13 1.3

135 0.063 0.006 147 250 50

136 1.6 0.1 148 5.0 1.6

137 1.6 0.05 149 >300 40

138 1.6 0.063 150 400 50
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um NF54  and  multidrug-resistant P.  falciparum K1,  than
FA [103]. Specifically, synthetic products 180 and 181 showed
significant  antiplasmodial  activity  against P.  falciparum
NF54  and P.  falciparum K1  with  IC50 values  around  1.5
μmol·L−1.

Chibale  and  co-workers  also  applied  3D-QSAR  (three-
dimensional quantitative structure-activity relationship) mod-
elling method to design antiplasmodial FA analogs [104].  Five
compounds with C-21 amide groups (182−186) and three vir-
tual hit molecules with C-3 ether groups (187−189) were syn-
thesized. C-21  amide  derivatives  showed  superior  antiplas-
modial  activity  compared  with  C-3  ether  derivatives
(Fig. 15 and Table 5) [104]. Among them, two non-cytotoxic C-
21 amide products (185 and 186) displayed the highest activ-

ity  against  chloroquine-sensitive P.  falciparum NF54  with
IC50 values of  0.3 and 0.7 μmol·L−1,  respectively.  They also
significantly  inhibited  the  chloroquine-resistant P.  falcipar-
um K1 strain with an IC50 value of 0.2 μmol·L−1 [104]. 

Antimycobacterial derivatives
FA  has  also  showed  antimycobacterial  activity  against

Mycobacteria tuberculosis (Mtb) with an MIC90 value of 0.24
μmol·L−1 [105-106].  Chibale  group synthesized  a  series  of  C-21
amide  analogs  of  FA  to  investigate  the  function  of  C-21
carboxyl  acid [106-107].  Some  synthesized  ethanamides  of  FA
were potent against Mtb with an MIC90 less than 10 μmol·L−1.
Specially, N-(4-sulfamoylbenzyl)fusidic  acid  amide  (190)
(Fig. 16) had the highest activity with an MIC90 value of 2.71
μmol·L−1 [106]. Thus, the substitutions at C-21, especially aryl
amide moieties, increased the antiplasmodial or antimycobac-
terial  activity  of  FA. The cyano group is  usually applied for
chemical modifications  due to  its  biocompatibility  and com-
plicated interaction with biological targets [108]. Salimova and
co-workers also introduced cyanoethyl group into FA at C-2,
C-3,  and  C-11  (191−194)  (Fig.  16) [109].  However,  none  of
them showed  antibacterial  activity,  indicating  that  cyano-
ethyl fragment was not a good choice for the improvement of
FA activity. 

Summary and Conclusions
 

The SAR of FA
The  structural  and  antibacterial  data  summarized  in  this

review enables us to further discuss the SAR of FA (Fig. 17).
Fundamentally understanding  the  SAR will  facilitate  the  fu-

 
Table 5    Antiplasmodial activities of C-3 and/or C-21 modi-
fied derivatives of FA (IC50, μmol·L−1)

No. P. falciparum NF54 No. P. falciparum NF54

FA 59 183 5.9

177 21.3 184 3.6

178 12.4 185 0.3

179 1.7 186 0.7

180 1.4 187 6.4

181 1.2 188 7.6

182 2.7 189 9.2
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ture discovery of  new biologically  active  fusidane-type anti-
biotics.  Compared  with  FA,  compounds 35−39 with oxida-
tion  at  C-26  or  C-27  show  significantly  weaker  activity
against  different  gram-positive  and  gram-negative  bacteria,
indicating  the  importance  of  the  methyls  at  C-26  and  C-27.
Δ17(20)  and  Δ24(25)  double  bonds  are  not  crucial  for  FA
activity,  which  is  supported  by  the  structures  of  compounds
131, 154, 155,  and 157−159. They exhibited comparable in-
hibitory effect against gram-positive bacteria as FA. The ori-
entation of  the  C-21  carboxyl  group  and  the  lipophilic  moi-
ety of the side chain must be similar to that of FA, with signi-

ficant effects on antibacterial activities. The substitution at C-
21  carboxyl  group  dramatically  changes  the  antibacterial
activity  of  FA.  Its  substitution  by  alkyl  esters  or  amides
(147−150)  reduces  the  activity.  It  has  to  be  noted  that  C-21
aryl esters with moderate antibacterial activity, such as com-
pounds 163, 170 and 171,  generally  possess  longer  half-life
than FA.

Replacement  of  the  16β-acetoxy  unit  by  various  other
groups  assures  all  or  part  of  the  activity  of  FA  (Fig.  17).
Compounds 132 with  a  16β-SCOMe  group  and 140 with  a
16β-OEt  are  proved  to  be  more  active  than  FA,  providing
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lead compounds for further chemical and biological investig-
ations.  By  comparing  compounds 3 and 55,  the  11α-OH  in
FA is important for antibacterial activity. Interestingly, a FA
derivative  (25)  with  an  11-ketone  instead  of  11α-OH shows
the same antibiotic activity as FA. The oxidation of C-6 or C-
7 (40 and 41) diminishes the biological activity, and 3α-OH is
more important than 3-keto, 3β-OH, and other halogen or sul-
fur substitutions (24, 26, and 143−146). Moreover, C-3 silic-
ate  esters  (160−162)  and  alkyl  esters  (164 and 165)  prolong
the  half-life  of  FA,  and  represent  attractive  lead  compounds
for further investigation. 

Conclusions and Future Perspectives
As summarized in this review, researches on characteriz-

ation  and  biological  evaluation  of  fusidane-type  antibiotics
from diverse fungal species are mainly reported before 1980.
However,  new  naturally  occurring  fusidane-type  antibiotics
are  increasingly  being  discovered  since  2006.  Chemical
modifications  and  biosynthesis  of  fusidane-type  antibiotics
have  been  reported  in  recent  years.  It  seems  that  scientists
tend to  re-pick  up  “old  weapons ”  to  deal  with  “new  chal-
lenges” associated with exhausted drug lead resources and in-
creasing resistant bacteria. Herein, we present a review on 47
fusidane-type antibiotics isolated from diverse fungi and bio-
transformation, and 81 analogs discovered from combination-
al  biosynthesis,  together  with  66  synthetic  or  semi-synthetic
fusidanes.

More importantly, the BGCs of fusidane-type antibiotics
containing  six  conserved  genes  and  several  tailoring  genes
are well studied now. A number of structurally diverse deriv-
atives have been obtained during combinatorial biosynthesis,
illustrating the great power of biosynthetic approaches to ex-
pand  the  chemical  diversity  of  fusidane-type  antibiotics.
Many synthetic methods have been reported to construct  the
chair-boat-chair ring system of fusidane-type antibiotics. Un-
fortunately, until now, there are no reports for total synthesis
of  their  structures,  especially  HA  (1),  CP  (2),  and  FA  (3).
Furthermore, FA is the main target of structural optimization
for  obtaining more  biologically  active  derivatives.  However,
despite extensive semi-synthetic studies of FA, the modifica-
tions are mostly related to the introduction of different substi-
tutions at C-3, C-16, and C-21. More modification strategies
or sites might be needed for investigating the SAR. Fusidane-
type  antibiotics  not  only  have  obvious  antibacterial  activity,
but also exhibit significant antiplasmodial, antimycobacterial,
antifungal, and cytotoxic activity. Based on the references lis-
ted, only compounds 132 and 140 were more active than FA
in antibacterial evaluation. More interestingly, nearly all syn-
thetic C-21 amide analogs, such as compounds 181, 185, and
186,  show  superior  antiplasmodial  activity  compared  with
FA.  Recent  advances  by  isolation,  biological  synthetic,  and
synthetic chemistry approaches offer promising opportunities
to access diverse fusidane-type antibiotics. Discovery of more
fusidane-derived antibiotics, even antiplasmodial agents, will
be expected.
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