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[ABSTRACT] Plant-derived labdane-related diterpenoids (LRDs) represent a large group of terpenoids. LRDs possess either a lab-
dane-type bicyclic core structure or more complex ring systems derived from labdane-type skeletons, such as abietane, pimarane,

kaurane, etc. Due to their various pharmaceutical activities and unique properties, many of LRDs have been widely used in pharma-
ceutical, food and perfume industries. Biosynthesis of various LRDs has been extensively studied, leading to characterization of a large
number of new biosynthetic enzymes. The biosynthetic pathways of important LRDs and the relevant enzymes (especially diterpene

synthases and cytochrome P450 enzymes) were summarized in this review.
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Introduction

Diterpenoids harbor C20-carbon skeletons comprising
four isoprene units. Labdane-related diterpenoids (LRDs) are
a large group of diterpenoids, with over 10% contents of all
terpenoids. This group of compounds possess either a labdane-
type bicyclic core structure or more complex ring systems de-
rived from labdane-type skeletons, such as abietane, pi-
marane, kaurane, beyerane, atisane, cassane, stemodane and
manoyl oxide (Fig. 1) . Labdane is named after labdanum,
an oleoresin of rockrose plant from which labdane-type diter-
penoids were isolated for the first time ™. LRDs have been
widely used in perfume and food industries for centuries. And
many of them possess various bioactivities, such as anti-mi-
crobial, anti-viral, anti-inflammatory and antitumor activi-
ties ®'% and therefore play critical roles in effectiveness of
the corresponding medicinal herbs or even used as commer-
cial drugs. For instances, andrographolide from Andrograph-
is paniculata is used as an inflammatory agent !'"'; triptolide
from Tripterygium wilfordii is an antitumor agent ['; tan-

[Received on] 03-Jul.-2021

['Corresponding author] E-mails:  joeff30@163.com
Cheng); zijiachen@imm.ac.cn (ZI Jia-Chen)

These authors have no conflict of interest to declare.

(ZHENG

Dedicated to the 90" Anniversary of the Founding of Shenyang Phar-
maceutical University

®

shinones are the main anti-inflammatory and antibacterial
constituents of the traditional Chinese medicinal herb Dan-
shen (Salvia miltiorrhiza) "\,

Reviews concerning the biosynthesis of multiple types of
diterpenoids have been published [ '+
above, LRDs comprise the largest group of diterpenoids and

. As mentioned

possess potent bioactivities, and their biosynthesis has been
extensively studied, leading to characterization of a large
number of new biosynthetic enzymes. Therefore, LRD bio-
synthesis is easily the sole topic of a review. Indeed, LRD
biosynthesis was specifically reviewed by Reuben J. Peters in
2010 "7, which mainly focused on diterpene synthases and
their mechanisms. After that, great advances on LRD biosyn-
thesis have been achieved, especially structure elucidation of
class I, class II and class I/Il diterpene synthases (diTPSs)
and characterization of a large number of cytochrome P450
enzymes (CYPs) which play critical roles in oxidative modi-
fication of terpene olefins. The present review updates the ad-
vances on biosynthesis of LRDs and comprehensively sum-
marizes the enzymes related to LRDs biosynthesis in plants,
mainly including diTPSs, CYPs, glycosyltransferases and
acetyltransferases.

General Biosynthetic Routes of LRDs

LRDs originate from two common precursors, isopen-
tenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP) which are synthesized through two pathways, i.e.
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Fig. 1 General biosynthetic pathway of LRDs. CPS: copalyl
pyrophosphate synthase; KS: kaurene synthase; KSL:
kaurene synthase-like enzyme; CYP: cytochrome P450 en-
zyme; UGTs: uridine pyrophosphate (UDP)-dependent gluc-
osyltransferases

the mevalonate pathway (MVA pathway) in the cytosol '™
and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway in
the plastids ",

The biosynthesis of LRDs is usually divided into three
modules. First, three IPP molecules are successively tethered
to one DMAPP molecule to yield the common diterpenoid
precursor E, E, E-geranylgeranyl pyrophosphate (GGPP) un-
der the catalysis of geranyl pyrophosphate synthase, franesyl
pyrophosphate synthase and GGPP synthase or via three se-
quential IPP condensation steps to DMAPP under the catalys-
is of sole GGPP synthase ™", which is called the GGPP mod-
ule (Fig. 1). Second, the GGPP is cyclized to form the corres-
ponding cyclic skeletons of LRDs under the catalysis of diT-
PSs, which is called the skeleton formation module
(Fig. 1). Finally, the LRD-related skeletons are further modi-
fied by oxidation, methylation, acylation, and glycosylation,
etc., to produce LRDs with great diversity in structure and
bioactivity *'; that is the modification module (Fig. 1).

DiTPSs Invovled in LRD Biosynthesis

The structural diversity of LRDs can be primarily attrib-
uted to their various skeletons which are formed under the
catalysis of diTPSs involved in LRD biosynthesis. In the bio-
synthetic pathways, various copalyl pyrophosphate (CPP)
synthases (CPSs) belonging to class II diTPSs, catalyze the
primary cyclization of GGPP to afford various bicyclic CPPs

or their alcoholic derivatives, such as nor-CPP % ens-

CPP [27-29, 34, 36»43]7 Syn‘CPP [34, 36, 44, 45], S_OH_CPP [46»48], 8, 13_
CPP ™ 88-OH-ent-CPP ™!, peregrinol diphosphate ",
and endo-CPP P (Fig. 1 and Table S1). Then, these pyro-
phosphate intermediates may be further converted into more
complex ring systems including kaurane-, abietane-, pi-
marane-, beyerane-, atisane-, canssane-, stemodane- and
manoyl oxide-type skeletons by class I diTPSs, such as
kaurene synthase (KS) and kaurene synthase-like enzymes
(KSLs) (Figs. 1 and 2) ¥, In addtion, these two-step cycliza-
tionreactionscanbeachievedbysomebifunctionalclassl/IIdiTPSs
(Fig. 1), such as AgAS (abietadiene synthase from Abies
grandis). The structural features and catalytic mechanisms of
distinct diTPSs are listed in detail as below.
CPSs

The structure of CPS was initially reported in 2011
(Fig. 3), which facilitated a deeper understanding of the cata-
lytic mechanism of this group of enzymes. CPSs belong to
class II diTPSs, harboring three domains (a, f and y) and a
conserved catalytic motif DXDD located in f domain which
can protonate the double bond between C-14 and C-15 of
GGPP to generate geranylgeranyl cation, and thereby initiate
cyclization. The carbocations are eventually quenched by
either elimination of protons or nucleophile attack of water
molecule to yield CPPs or their alcoholic derivatives with

[53]

distinct stereochemistry. Among these bicyclic intermediates,
nor-CPP, ent-CPP and syn-CPP are predominant ones and
formed under the catalysis of nor-CPS, ent-CPS and syn-
CPS, respectively (Fig. 2 and Table S1). Other CPSs are re-
ported to be capable of cyclizing GGPP into unusual CPPs or
alcoholic derivatives of CPPs. For instances, NtCPS2 from
Nicotiana tabacum ", CcCLS from Cistus creticus " and
GrTPS1 from Grindelia robusta “*' converted GGPP into 8-
hydroxy-nor-CPP (also called LPP) as their sole product.
ZmCPS4 from Zea Mays produceed labda-8, 13-dien-15-yl
pyrophosphate (8, 13-CPP) as its major product and LPP as
its minor product *”. SmCPS4 from S. miltiorrhiza produced
8p-hydroxy-ent-CPP (ent-LDPP) ™. VacTPS1 from Vitex
agnus-castus L. produced peregrinol pyrophosphate . In
addition, a bifunctional diTPS SmCPSKSL1 was character-
ized from Selaginella moellendorffii, with a rare function of
producing labdan-7-13E-dienyl pyrophosphate (endo-CPP) ©*")
(Fig. 2).
KS and KSLs

CPPs and their derivatives can be further cyclized under
the catalysis of KS or KSLs (Fig. 2). KS and KSLs belong to
class I diTPSs. The structure of a class I diTPS taxadiene syn-
thase involved in taxol biosynthesis has been reported, har-
boring three domains (a, # and y) (Fig. 4) ®¥. Although KS
and most KSLs possess three domains like taxadiene syn-
thase, an a/f bi-domain diTPS SmKSL for synthesis of
miltiradiene was identified from S. miltiorrhiza . Identific-
ation of SmKSL indicated that domain-loss events might in-
dependently occur multiple times during the evolution of
plant TPSs 53 Like all the class I TPSs, KS and KSLs pos-
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sess two conserved motifs DDXXD and (N, D)XX(S, T)XXX
(E, D) in their oo domains. Residues in bold coordinate with
three Mg”" ions which ionize CPPs by eliminating pyrophos-
phate anion to yield carbocation intermediates and thereby
trigger further cyclization. KS and KSLs, together with their
substrates and products, are summarized in Fig. 2.

In the catalytic process, KS or KSLs usually interact with
their CPS partners. Accordingly, KSL/CPS fusion might sig-
nificantly increase catalytic efficiency . For instance, in S.
miltiorrhiza SmCPS (a nor-CPS) and SmKSL were respons-
ible for conversion of GGPP into miltiradiene, a diterpene ol-
efin intermediate in the biosynthesis of tanshinones, and the
fusion of SmKSL and SmCPS caused a 2.9-fold increase in
miltiradiene production in the engineering yeast .

Class I/class I bifunctional diTPSs

From lycophytes and gymnosperms, some bifunctional
diTPSs were identified ™. All of these enzymes are also tri-
domain TPSs P7 (Fig. 5), including AgAS (abietadiene syn-
thase from A. grandis), Iso (isopimaradiene synthase from
Picea abies) "™, GbLSP (levopimaradiene synthase from
Ginkgo biloba) ™, SmMDS P and SmCPSKSL1 P"
(miltiradiene synthase and labda-7, 13E-dien-15-ol synthase
from Selaginella. moellendorffii) and AbCAS (cis-abienol
synthase from A. balsamea) . These diTPSs possess both
the class I catalytic motifs DDXXD and (N, D)XX(S, T)XXX
(E, D) and the class II motif DXDD. Their class I motifs are
located in the C-terminal a domain, while their class II mo-
tifs in the N-terminal  and y domains. Therefore, both class I
(ionization-initiated) and class II (protonation-initiated) cyc-
lizations of GGPP are performed. For instance, AgAS proton-
atesd the double bond between C-14 and C-15 of GGPP to

DDXXD motif
NTE motif

Fig. 5 AgAS structure (o, f and y domains are colored in
blue, green and yellow, respectively)

®

yield (+)-CPP and then removed the pyrophosphate anion to
trigger formation of the third ring to afford abiet-8(14)-ene
carbocation which was subsequently attacked by a molecule
of water to yield 13-hydroxyl-(8)14-abietene. 13-Hydroxyl-
(8)14-abietene was not stable and subject to spontaneous wa-
ter elimination to generate four stable compounds, namly (-)-
abietadiene, (—)-levopimaradiene, (—)-neoabietadiene and (—)-
palustradiene Y (Fig. 2).

CYPs Involved in LRD Modifications

CYPs involved in the biosynthesis of kaurene-derived diter-
penoids

Gibberellins, with a 6/5/6/5 ring system derived from ent-
kaurene (Fig. S1), are a group of phytohormones which are
essential for plant growth and development “. Moreover,
many kaurane-type diterpenoids possess pharmaceutical bio-
activities. Oridonin from Rabdosia rubescens exhibited a
broad range of biological effects such as anticancer and anti-
inflammatory activities ' . 114-Hydroxy-ent-16-kaurene-
15-one from Jungermannia tetragona showed potent inhibit-
ory activities against several cancer cell lines "', Although a
large number of kaurane-type diterpenoids have been isol-
ated from plants, the number of CYPs related to their biosyn-
thesis is limited except for the ones involved in gibberellin
biosynthesis.

The CYPs responsible for oxidation of C-3, C-13 and C-
19 of kaurene have been characterized (Table S2). In Stevia
rebaudiana, C-19 of ent-kaurene was oxidized by ent-
kaurene oxiase (KO) ““*? to kaurenoic acid which was hy-
droxylated at its C-13 by SrKAH to afford steviol, the pre-
cursor of the natural sweeteners steviol glycosides, such as
stevioside and rebaudioside A (Reb A) " (Fig. S2). In rice,
OsKOLA4, also named CYP701AS8, is responsible for hy-
droxylation of C-3 of ent-kaurene to yield 3a-hydroxy-ent-

71
kaurene ",

In the biosynthetic routes of gibberellins (GAs) > 7%
(Fig. S1), kaurenoic acid oxidase (KAO) catalyzed the oxida-
tion of C-7 of kaurenoic acid and formation of the GA skelet-
on (GA,) > 7. C-13 of GA,, was hydroxylated by gibberel-
lin 13-hydroxylase (130x) to afford GAs; ™. Gibberellin 20-
hydroxylase (200x) 7 7*" catalyzed the oxidation of C-20 of
GA|; and GAs; to yield GAs5, GAyy, GAy, GAys, GAyy,
GA 9, GA ;7 and GA,, (Fig. S1). Then, conversions from GAy
to GAy, 2,3-didehydro GAg and GA; and from GA,, to GA,
GA;s and GA; were achieved under the catalysis of a sole
CYP gibberellin 3-hydroxylase (3o0x) (Fig. S1) % ¥4,
Among these GAs, GA;, GA;, GA, and GA, are potent
phytohormone molecules, which were subsequently inactiv-
ated to generate GAg, GAs, and their catabolites through fur-
ther oxidation catalyzed by gibberellin 2-hydroxylase (20x)
(Fig. S1) ®*1 All the CYPs were identified from Arabidop-
sis thaliana, while some of their isoenzymes were found in
other plants, e.g. two 130x CYP714B1 and CYP714B2 from

[93]

rice 1 and two 20x from Haseolus coccineus L. V" and Z.

94] :
mays ", respectively.
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In addition, some CYPs were found to be capable of ox-
idizing ent-isokaurene where a double bond between C-15
and C-16 was replaced by a double bond between C-16 and C-
17 in ent-kaurene. A CYP MtKO from the medicinal herb
Montanoa tomentosa oxidized ent-isokaurene to isokaureno-
ic acid . CYP71Z6 from rice was able to hydroxylate C-2
and C-3 of ent-isokaurene, which is considered to be a cru-
cial step in the biosynthesis of oryzadione, a phytoalexin .
The CYPs involved in the biosynthesis of kaurene-derived
diterpenoids are summarized in Table S2.

CYPs involved in the biosynthesis of abietane-type diterpen-
oids

Plants belonging to the family Lamiaceae are rich in
phenolic diterpenoids. For instance, the medicinal herb rose-
mary (Rosmarinus officinalis), S. pomifera and S. fruticose
contain a large amount of carnosol and carnosic acid, and S.
miltiorrhiza is rich in tanshinones. These compounds possess
various bioactivities, such as antioxidant, anti-inflammatory
and antibacterial activities, because they are widely used in
pharmaceutical, food and cosmetics industries. Biosynthesis
of carnosic acid and tanshinones has been intensively studi-
ed U7 (Fig. $3). They share the same the early steps from
GGPP to 11, 20-dihydroxy ferruginol. The olefin precursor
miltiradiene was converted into abietatriene through spon-
taneous oxidation . A handful of CYPs including
CYP76AH! """ and CYP76AH3 " ') from S. miltiorrhiza,
CYP76AH4 ™ '™ CYP76AH22 and CYP76AH23 from
rosemary and CYP76AH24 from S. pomifera and S. Fru-
ticose "1 were able to successively hydroxylate C-12 and C-
11 of abietatriene to yield 11-hydroxy ferruginol, which was
subsequently oxidized into 11, 20-dihydroxy ferruginol by
CYP76AK subfamily enzymes, including CYP76AK1 from
S. miltiorrhiza, CYP76AK7 and CYP76AKS from rosemary
and CYP76AK6 from S. pomifera and S. fruticose "> '™,
Furthermore, CYP76AK6, CYP76AK7 and CYP76AKS ox-
idized C-20 to yield carnosic acid. 11, 20-Dihydroxy ferru-
ginol was spontaneously oxidized into 10-hydroxymethyl tet-
rahydromiltirone. Recently, CYP71D373 and CYP71D375
were identified from S. miltiorrhiza, with a function of cata-
lyzing formation of D ring of tanshinones to yield cryptotan-
shinone, methylenedihydrotanshinquinone and 15, 16-di-
hydrotanshinone respectively, where miltirone, 4-methyl-
enemiltirone and Ro acted as the substrates ", In addition,
CYP71BES2 from S. pomifera was able to oxidize C-2 of fer-
ruginol to produce salviol "* (Fig. $3). Moreover, many of
these CYPs are substrate-promiscuity enzymes, which often
results in significant diversity of phenolic diterpenoids in
planta. For instance, CYP76AK6, CYP76AK7 and
CYP76AKS can also successively oxidize C-20 of ferruginol
to produce pisiferol, pisiferal and pisiferic acid (Fig. S3).

T. wilfordii is a traditional Chinese medicinal herb used
for treatment of rheumatoid arthritis. Triptolide is the main
pharmaceutical constituent of 7. wilfordii, belonging to abi-
etane-type diterpenoid. CYP728B70 identified from 7. wil-
fordii has been proved to catalyze carboxylation at C-19 of
abietatriene to produce dehydroabietic acid which is sup-

®

posed to be the precursor of triptolide " (Fig. $3).

The abietane-type diterpenoid acids are the major com-
ponents of conifers oleoresins which play crucial roles in
plant defenses against pests and pathogens. As mentioned
above, in A. grandis and P. abies (Norway spruce), abi-
etadiene synthases convert GGPP into an unstable product 13-
hydroxy-8(14)-abietene which spontaneously transforms to
abietadiene, levopimaradiene, neoabietadiene and  palus-
tradiene. These four olefins were oxidized into the corres-
ponding acid products abietic acid, levopimaric acid, neoabi-
etic acid and palustric acid by CYP720B subfamily enzymes,
such as CYP720B1 from Pinus taeda (loblolly pine) """ and
CYP720B4 from Picea. sitchensis (Sitka spruce) !'*). In addi-
tion, CYP720B2 and CYP720B12 cloned from P. banksiana
(jack pine), P. contorta (lodgepole pine) and Sitka sprucecan
directly oxidized C-18 of 13-hydroxy-8(14)-abietene into
carboxyl group, and abietic acid, levopimaric acid, neoabiet-
ic acid and palustric acid were subsequently obtained through
elimination of a molecule of water """ (Fig. S4). The CYPs
involved in abietane-type diterpenoids are summarized in
Table S3.

CYPs involved in the biosynthesis of pimarane-type diterpen-
oids

Momilactones serve as allelopathic substances in land
plants to inhibit the growth of competing plants. The biosyn-
thetic pathway of momilactone A and momilactone B has
been completely elucidated in rice "' (Fig. S5). OsCPS4 and
OsKSL4 converted GGPP into syn-pimara-7, 15-diene, the
precursor of momilactone A and B "'l CYP76M8 and
CYP99A3 oxidizes C-6 and C-19 of syn-pimara-7, 15-diene
into a ketone and a carboxyl groups, respectively, and Os-
MAS (a short-chain dehydrogenase reductase, SDR) sub-
sequently catalyzed the formation of the five-membered lac-
tone. Then, CYP701A8 oxidizes C-3 into a ketone group to
yield momilactone A. Momilactone A can be converted into
momilactone B through hydroxylation of C-20 followed by
formation of the acetal group at C-3 under the catalysis of
CYP76M14. In the conversion of momilactone A to mom-
ilactone B, CYP76M 14 may function before CYP701AS.

In addition, the CYPs responsible for oxidation of ent-
sandaracopimaradiene have also been characterized. For in-
stance, CYP701A8 in rice, also named OsKOL4, hy-
droxylated C-3 of ent-sandaracopimaradiene to 3a-hydroxy-
ent-sandaracopimaradien (Fig. $5) U\ Then, CYP76M6 and
CYP76MS catalyzed hydroxylation at C-7 and C-9 of 3a-hy-
droxy-ent-sandaracopimaradien to yield oryzalexins D and E,
respectively "> ') (Fig. S5). The CYPs involved in pia-
marane-type diterpenoids are summarized in Table S4.

CYPs involved in the biosynthesis of cassane-type diterpen-
oids

Phytocassanes belonging to cassane-type diterpenoids,
serve as phytoalexins in plants, and their biosynthesis can be
induced under biotic and abiotic stress. In rice, ent-cassa-12,
15-diene is considered as the precursor of phytocassanes
A—E. Although the biosynthetic pathway of phytocassanes is
not completely elucidated, a handful of CYPs responsible for
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oxidation of C-2, C-3 and C-11 of ent-cassa-12, 15-diene
have been characterized "' (Fig. S6). CYP701A8 and
CYP71Z7 successively catalyzed the hydroxylation of C-3
and oxidation of C-2 into a ketone group to produce 3a-hy-
droxyl-ent-cassadiene and 3a-hydroxyl-ent-cassadiene-2-
one " " 3¢-Hydroxyl-ent-cassadiene and 3a-hydroxyl-
ent-cassadiene-2-one  were converted into 1-deoxyphyto-
cassane C and phytocassane D, respectively, through oxida-
tion of C-11 into a ketone group by CYP76M7 and
CYP76M8 "™, Tn addition, CYP71Z7 can catalyzes the oxid-
ation of C-2 of phytocassane C, 2-deoxyphytocassane A and
1-deoxyphytocassane C to produce phytocassane B, phyto-
cassane A and phytocassane D, respectively (Fig. S6). The
CYPs involved in cassane-type diterpenoids are summarized
in Table S5.
CYPs involved in the biosynthesis of manoyl oxide-type diter-
penoids

Forskolin isolated from Coleus forskohlii (Lamiaceae) is
a cyclic AMP booster, which was potentially used to treat
glaucoma and heart failure. Forskolin is derived from 13R-
manoyl-oxide "'"*!. All the CYPs involved in biosynthesis of
forskolin have been characterized, which belong to CYP76
subfamily ™® (Fig. S7). Among them, CYP76AHS,
CYP76AHI11, CYP76AH15 and CYP76AH17 are respons-
ible for oxidation of C-11 to produce 11-0x0-13R-manoyl-ox-
ide, while CYP76AH11 also catalyzes the hydroxylation at C-
1, C-6 and C-7 to yield 9-deoxy-7-deacetylforskolin. Then,
CYP76AH16 hydroxylates C-9 of 9-deoxy-7-deacetylfor-
skolin to afford 7-deacetylforskolin which is converted into
forskolin through acetylation of the hydroxy group of C-7 by
CfACTI1-8 (an acetyltransferase). In addition, CYP76AH24
from S. pomifera was found to be capable of catalyzing the
hydroxylation at C-11 of 13R-manoyl-oxide to generate 11-4-
hydroxy-13R-manoyl oxide "', The CYPs involved in
diterpenoids  are

manoyl summarized in

Table S6.

oxide-type

Glycosylation and Acylation of LRDs

Glycosylation and acylation are also crucial modifica-
tion steps in LRD biosynthesis, and sugar moieties and acyl
groups often substantially contribute to their unique proper-
ties or pharmaceutical activities. Several uridine pyrophos-
phate (UDP)-dependent glucosyltransferases (UGTs) are
characterized in the biosynthetic pathway of the natural no-
calorie sweeteners steviol glycosides. As stevioside and re-
baudiosides A, D and M are the four most important sweeten-
er substances, we only introduce four UGTs responsible for
synthesis of these four compounds "'® "' (Fig. S2). For ex-
ample, STUGT85C2 catalyzed glycosylation of 13-OH of ste-
viol to yield steviolmonoside (Sm). StUGT91D2 introduced a
glucosyl group at position C-2 of the sugar moiety of Sm to
generate steviolbioside (Sb). STtUGT74G1 glucosylated the
carboxyl group (C-19) of Sb to afford stevioside.
SrUGT76G1 added a glucosyl group at position 3-OH of 13-
O-glucosyl to rebaudioside A (Reb A). Then, STtUGT91D2

®

and SrUGT76G1 successively catalyzed glucosylation at 2-
OH and 3-OH of the glucosyl group at C-19 to respectively
produce Reb D and Reb M.

Andrographolide and neoandrographolide obtained from
A. paniculata belong to ent-labdane-type diterpenoid glycos-
ides. Due to their potent anti-inflammatory activities, they
have potentials to be developed into the next generation of
natural anti-inflammatory drugs. Andrograpanin is the agly-
cone of neoandrographolide. It has been reported that
ApUGT can convert andrograpanin to neoandrographolide
through glycosylation of 19-OH " (Fig. S8).

In addition, acyl moieties are often found in the struc-
tures of LRDs. As mentioned above, in the biosynthetic path-
way of forskolin, CFACT1-8 was responsible for acetylation
of 7-OH of deacetylforskolin to form forskolin "' (Fig. S7).

Summary and Perspectives

Plant-derived LRDs represent a large group of terpen-
oids. Due to their various pharmaceutical activities and
unique properties, many of LRDs have been widely used in
pharmaceutical, food and perfume industries. The studies on
LRD biosynthesis were extensively conducted, leading to
characterization of a large number of new biosynthetic en-
zymes, especially diTPSs and CYPs. However, few LRDs
biosynthetic pathways have been completely revealed. Identi-
fication of the candidate biosynthetic genes is a big challenge
in the studies on plant metabolite biosynthesis. Advances in
next-generation sequencing and bioinformatics are helpful to
overcome the challenge of identifying candidate biosynthetic
genes from plants. An increasing number of well-qualified
plant genomes have been obtained, which leads to discovery
of biosynthetic gene clusters of LRDs, such as the biosynthet-
ic gene clusters of tanshinones !
oid phytoalexins "*". Transcriptome, together with new
bioinformatics techniques (e. g. self-organizing maps ['**),
may facilitate the discovery of relevant biosynthetic genes
which are not clustered. Characterization of biosynthetic

and rice-derived diterpen-

genes is another challenge. Synthetic biology approach is a
powerful tool to overcome this challenge. Compared with in
vitro reaction assay, synthetic biology approach can circum-
vent large-scale expression of enzymes for establishment of
in vitro reactions and utilization of expensive or even inac-
cessible substrates ®” ', Genome editing techniques (e. g.
CRISPR-Cas9) and RNA interference methods enable invest-
igation of the roles of candidate genes in planta "*. Further
development in relevant technologies will lead to elucidation
of more complete biosynthetic pathways of LRDs and charac-
terization of more new enzymes, which will enable the con-
struction of platforms for large-scale production of natural
and unnatural LRDs by synthetic biology approaches or com-
binatorial biosynthesis.

Supporting Information

Supporting information of this paper can be requested by
sending E-mails to the corresponding authors.
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