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[ABSTRACT] Mushrooms are abundant in bioactive natural compounds. Due to strict growth conditions and long fermentation-time,
microbe as a production host is an alternative and sustainable approach for the production of natural compounds. This review focuses
on the biosynthetic pathways of mushroom originated natural compounds and microbes as the production host for the production of the
above natural compounds.
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Introduction

Mushrooms, an attractive delicacy characterized by their
unique flavor,  taste,  and potential  health  benefits,  have been
long used for medicinal purposes in Asian countries. “Mush-
room”  is  not  a  taxonomic  category.  Actually,  from  a  taxo-
nomic  point  of  view,  most species  of Basidiomycetes  and
some  species  of  Ascomycetes  belong  to  mushrooms [1].
Mushrooms are  known  to  be  prolific  producers  of  structur-
ally diverse, natural bioactive compounds, and some of them
possess anticancer,  antiviral,  antimicrobial,  and  antifungal
properties [1-3].  These  bioactive  compounds  can  be  classified
into  several  chemical  groups,  such  as  polysaccharides,
terpenoids,  and  particularly  sesquiterpenes [4].  However,
many mushroom  strains  are  difficult  to  grow  under  laborat-
ory conditions,  due to their  restrict  requirements for  suitable
growth  conditions  and  long  fermentation  time.  Furthermore,
extraction  of  these  compounds  from natural  sources  is  often

costly  with  respect  to  the  presence  of  various  isoforms  and
structurally related impurities in complex mixtures [5] and can
not  meet  the  demands  of  today’s  market [6].  Therefore,  it  is
necessary  to  explore  alternative  and  sustainable  sources  of
natural  compounds.  One  of  the  practical  methods  is  to  use
microbes as a production host to produce natural compounds.

Escherichia coli, Saccharomyces cerevisiae and Xantho-
phyllomyces  dendrorhous are  platform organisms that  act  as
industrial cell factories for the production of a wide variety of
compounds ranging from pharmaceutically active substances
to food ingredients and biofuels [7]. Production hosts friendly
adopt  the  heterogenous  biosynthetic  pathways  of  natural
compounds from  most  genera  to  yield  various  natural  com-
pounds including  polyketides,  terpenes,  peptides,  and  alkal-
oids [8-11]. This approach usually gives a sustainable supply of
natural compounds from cultures (0.1–1.0 L). For large scale-
production  of,  for  instance,  artemisinin  and  its  precursor
artemisinic acid,  proper  engineering  methods,  such  as  en-
zyme  engineering,  metabolic  flux  optimization  and  system
optimization have been introduced to improve the titer for in-
dustrial use.  Currently,  heterologous  expression  is  recog-
nized as  one of  the  powerful  methods  for  natural  compound
production.

Up to 2020, increasing studies have been performed con-
cerning the  heterologous  production  of  mushroom  metabol-
ites. This review focuses on the production of mushroom ori-
ginated natural  compounds,  including  copaene,  cubebol,  er-
gothioneine,  illudins,  lagopodins,  psilocybin  and  viridiflorol
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in organisms, and their biosynthetic pathways. Some interest-
ing information is also provided. These findings demonstrate
the  great  potential  of  mushroom  originated  natural  active
compounds in microbes, which will promote the research and
development of  mushroom  originated  natural  active  com-
pounds  and  diverse  pathways  for  the  synthesis of  natural
compounds. 

Copaene

Copaene possesses  important  biological  properties,  such
as anticarcinogenic and antioxidant activities in the treatment
of  neurodegenerative  diseases [12], or  serves  as  an  insect  at-
tractant [13].  Through  Basic  Local  Alignment  Search  Tool
(BLAST)  analysis  of  Basidiomycota Coniophora puteana
genome,  which  is  classified  as  a  common  wood  rotting
fungus,  with  conserved  terpene  synthases  sequences,  Copu2
is  proved to  show copaene synthase  activity [14].  To produce
copaene  in E. coli,  Mischko et  al.  heterologously  expressed
Copu2  to  enhance  the  expression  of  copaene  synthase  and
two  bottleneck  enzymes  DXS  and  idi  from  the  native  non-
mevalonate pathway (MEP) to increase the precursor supply,
obtaining  an  optimized  productin  of β-copaene  at  215
mg·L−1 [15] (Fig. 1). 

Cubebol

Cubebol is of interest to the cosmetic and flavor industry
as  a  registered  product  with  pronounced  cooling  effects [16],
which can be formulated into dietary supplements and flavor-
ing  agents [16].  So  far,  different  sources  of  cubebol  synthase
have  been  identified  (Table  1).  Cop4,  originated  from C.

cinereus, was designated as cubebol and β-copaene synthase.
Recombinant Cop4 was reported to generate 30% β-copaene
and 10% cubebol with respect to the total terpene production
titer [17].  Even  under  optimized in  vitro conditions,  Cop4
did not  generate  more  than  34.2% cubebol [18]. Vitis  vinifera
originated δ-cadinene  synthase  VvPNCuCad,  encoding  a
multi-product  STPS,  showsed  20.5% cubebol  selectivity
when  expressed  in E. coli [19]. Other  fungal  STPSs  with  re-
lated cubebol  synthase  activity  were cloned  and  character-
ized  from A. cinnamomea (AcTPS9) [20] and Stereum
hirsutum (Stehi_128017) [21].  From Coniophora puteana,
Copu3  was  identified  to  show  cubebol  synthase  activity [15]

(Fig. 2A).
The  first  biotechnological  production  approach  reported

for the quantitative generation of cubebol utilized a patented
plant enzyme (CQ813505.1 from grapefruit Citrus x paradisi;
28% cubebol  selectivity)  but  only  provided  titers  of  10
mg·L−1 [22]. Mischko et al. heterologously expressed Copu3 to
enhance the  expression  of  cubebol  synthase  and  two  bottle-
neck enzymes DXS and idi from native non-mevalonate path-
way (MEP) to increase the precursor supply, achieving an op-
timized δ-cubebol at 497 mg·L−1 [15] (Fig. 2B). 

Ergothioneine

Ergothioneine (ERG),  a  histidine-derived  thiol  com-
pound,  was  shown  in in  vitro experiments  to  function  as  an
antioxidant [23] and cytoprotectant, resulting in its use in diet-
ary  supplements  and  as  a  cosmetic  additive [24].  Mushrooms
have been long used as the source of  ERG [25]. ERG biosyn-
thetic genes are present in some microbes, such as actinobac-
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Fig. 1    Diagram of copaene biosynthesis pathway and E. coli as the production host for copaene production
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Table 1    List of genes in the biosynthesis pathways of the above natural products

Natural products Genes Names Accession No. Sources

Copaene Copu2 XP_007771895.1 C. puteana

Cop4 A8NU13.1 C. cinereus

Cubebol Cubebol synthase XP_007299839 S. hirsutum

BvCS B. vibrans

Copu3 XP_007765978.1 C. puteana

VvPNCuCad HM807407.1 V. vinifera

Cop4 A8NU13.1 C. cinereus

Stehi_128017 S. hirsutum

AcTPS9 A. cinnamomea

Ergothioneine egtA 433650597 M. smegmatis

egtB 433650596 M. smegmatis

Amidohydrolase egtC 433650595 M. smegmatis

egtD 433650594 M. smegmatis

PLP-dependent C-S lyase egtE 433650593 M. smegmatis

Illudins Protoilludane synthase Pro1 KC852198 A. gallica

OMP6 MUStwsD_GLEAN_10003820 O. olearius

OMP7 MUStwsD_GLEAN_10000831 O. olearius

Stehi1|25180 NW_006763134.1 S. hirsutum

Stehi1|64702 NW_006763145.1 S. hirsutum

Stehi1|73029 NW_006763132.1 S. hirsutum

PpSTS-08 LC378430 P. placenta

PpSTS-18 LC378436 P. placenta

Agr6 MN146029 A. aegerita

Agr7 MN146030 A. aegerita

Denbi1_659367 D. bispora

Hetan2_454193 H. annosum

Hypsu1_138665 H. sublateritium

P450 monooxygenase P450 6i MUStwsD_GLEAN_10003819 O. olearius

Lagopodins Cuprenene synthase Cop6 C. cinerea

P450 monooxygenase Cox1 C. cinerea

Cox2 C. cinerea

Psilocybin Tryptophan decarboxylases PsiD P. cubensis and P. cyanescens

Kinase PsiK

Methyltransferase PsiM

P450 monooxygenase PsiH

Viridiflorol Viridiflorol synthase Agr2 MN146025 A. aegerita

Agr5 MN146028 A. aegerita

Sphst_47084 S. stellatus

Denbi1_816208 D. bispora
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teria,  cyanobacteria,  and α-proteobacteria,  according  to  the
review  by  Jones et  al. [26].  Seebeck et  al.  identified egtAB-
CDE as the  ERG  biosynthetic  gene  cluster  from  mycobac-
teria and sucessfully reconstituted this biosynthetic process in
vitro using recombinant proteins from Mycobacterium smeg-
matis [27] (Fig. 3A). Osawa et al. first expressed the egt genes
as the operon with tac and T7 promoters in vivo and success-
fully produced ERG, but the production yeild was low. They
explained  that  EgtB-catalyzed  reaction  was  a  bottleneck
through  protein  expression  assay  and  enzyme  activity  assay
of  each  egt  genes.  Reinforcement  of  the γGC supply,  sub-
strate  of  EgtB  resulted  in  an  increase  of  ERG production  to
24 mg·L−1 [28] (Fig. 3B). 

Illudin

Illudins  are  a  group  of  sesquiterpene  antibiotics  widely
reported  as  antibacterial  and  antitumor  agents [29].  Several

species  of  mushroom-forming  fungi  (Basidiomycetes)
have  been  reported  to  produce  different  types  of  illudins
(Fig. 4A) [30-37]. Illudins M and S are the “stars” among illud-
ins. Illudin S was tested by the National Cancer Institute as a
potential antitumor agent against a variety of rodent solid tu-
mors and leukemias. Illudin M is a cytotoxic fungal illudane
sesquiterpene comprising  strongly  electrophilic  spirocyclop-
ropane and  enone  systems.  Although  illudins  are  highly  ef-
fective against cancer cells,  their indiscriminate toxicity lim-
its clinical applications [38]. Fortunately, they are readily avail-
able  in  gram  quantities  and  lend  themselves  to  chemical
modification,  which can broaden their  therapeutic  index and
enhance cancer  selectivity.  Analogues  of  illudins  with  re-
duced toxicity  have  been developed which  may be  safe,  po-
tent  antiviral  compounds [39].  Oxidation  of  illudin  M  with
pyridinium  dichromate  (PDC)  afforded  dehydroilludin  M
which showed an improved therapeutic index in animal stud-
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Fig. 2    Diagram of cubebol biosynthesis pathway and E. coli as the production host for cubebol production
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Fig. 3    Diagram of ERG biosynthesis pathway and E. coli as the production host for ERG production
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ies [40]. In contrast, Illudin S was tested by the National Can-
cer Institute as a potential antitumor agent against a variety of
rodent solid tumors and leukemias. HMAF, prepared from il-
ludin  S via a  reverse  Prins  reaction  using  formaldehyde  and
H2SO4, displayed in vitro and in vivo antitumor activity and is
currently evaluated in a phase I clinical trial [41-42]. Moreover,
irofulven is known to inhibit the synthesis of DNA by block-
ing the cell cycle at the G1-S phase interface, which has been
evaluated  in  several  phase  II  clinical  trials  with  activites
against some prostate and pancreatic cancers [43-44]. 

Recent progress on the biosynthesis pathway of illudins
The  biosynthesis  of  illudins  begins  with cyclization  and

rearrangement  of  universal  precursor farnesyl  diphosphate
(FPP) catalyzed by protoilludene synthase, to yield a sesquit-
erpenoid protoilludane.  Protoilludane  can  be  further  modi-
fied  by  accessory  enzymes  such  as  cytochrome  P450
monoxygenases and  other  types  of  oxidoreductases,  obtain-
ing the final illudin product [45].

Several  protoilludene  synthases  from  Basidiomycetes
have been  reported.  The  first  protoilludene  synthase,  desig-
nated as Pro1, was identified from Armillaria gallica [46]. Fur-
ther analysis of Pro1 revealed an open reading frame 1041 bp
in  length  encoding  a  protein  with  347  amino  acid  residues
and a predicted molecular mass of 40 kDa. Heterologous ex-
pression  of Pro1 in E. coli resulted  in  one  peak,  suggesting
that it  is also a highly specific enzyme, although the activity
of  this  enzyme has  not  been  fully  studied in  vitro [46].  Then,
Wawrzyn and  co-workers  reported  two  protoilludene  syn-
thases Omp6 and Omp7 from Jack O’Lantern mushroom Om-
phalotus olearius,  which  was  first  identified  for  illudins  S,
and Omp6 and Omp7 were highly active and product-specif-
ic  protoilludene  synthases,  producing  6-protoilludene via a

likely  1,  11  ring  closure  of  FPP  to  create  a  trans-humulyl
cation  intermediately,  followed  by  two  cyclization  steps  to
yield  the  final  volatile  sesquiterpene [47].  The  crystallization
and preliminary X-ray analysis of the 357-amino-acid 41 068
Da  Omp6  protoilludene  synthase  were  also  reported [48].  In
2013, three 1, 11-cyclizing protoilludene synthases, named as
Stehi1ǀ64702, Stehi1ǀ73029, and Stehi1ǀ25180, from Stereum
hirsutum were successfully predicted and cloned, while their
functions were confirmed [21].  According to in vitro analysis,
there  was  a  small  amount  of β-elemene  in  the  headspace  of
Stehi1|64702 and  Stehi1|73029  expressing  cultures,  suggest-
ing  that  these  protoilludene  synthases  are  less  specific  than
Stehi1|25180, with only one single peak by GC/MS [21]. Based
on  the  bioinformatic  survey  of  BLAST  programme  and
known  STSs  on  the  genomic  database  of Postia placenta,
Ichinose et  al.  found  that  PpSTS-08  and  PpSTS-18  were
shown  to  synthesize  ∆6-protoilludene  as  a  single  major
product by GC-MS analysis, although the kinetic parameters
of  these  enzymes  have  not  been  fully  studied [49]. Very  re-
cently, Zhang et al. searched Agr6 and Agr7 as protoilludene
synthases  through  BLASTP  search  in  the  genome  of Agro-
cybe aegerita, which is a prominent fungal species with good
application value and solid fundamental background [50]. Fur-
thermore, the  following  three  sesquiterpene  synthases,  Den-
bi1_659367 from Dendrothele bispora, Hetan2_454193 from
Heterobasidion annosum,  and Hypsu1_138665 from Hypho-
loma sublateritium,  which show a close relationship to Agr6
and Agr7,  were  cloned  and  verified  as  protoilludene  syn-
thases [50].

P450s  and/or  other  enzymes  from  mushroom-forming
fungi (Basidiomycetes) responsible for the biosynthesis of il-
ludins remain poorly understood. P450 6i, located in the same
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cluster of  OMP6,  was  the  only  proved  P450 for  the  biosyn-
thesis of illudins [51]. The monooxygenase activity of P450 6i
to modify protoilludene was examined in E. coli, S. cerevisi-
ae and P.  pastoris, respectively.  The  identified  enzymes  in-
volved  in  the  biosynthetic  pathway  of  illudins  are  shown  in
Fig. 4B and listed in Table 1. 

Synthetic biology intervention on illudins
Protoilludane, the precursor of illudins, was produced in

E. coli using synthetic biological methods. Protoilludene was
first  generated  in E. coli through overexpression  of  a  hybrid
exogenous MVA pathway, endogenous FPP synthase (IspA),
and  protoilludene  synthase  (OMP7)  from O. olearius.
Through  sequential  order  permutation  of  the  lower  MVA
pathway,  the  alteration  of  promoters  and  copy  numbers  for
the  upper  MVA pathway,  the  coordination  of  the  lower  and
upper portions,  and  homolog  substitution  with  the  corres-
ponding  genes,  protoilludane  production  finally  reached  to
1199  mg·L−1 [52]. In  2017,  the  same  group  produced  protoil-
ludene via the  2C-methyl-D-erythritol  4-phosphate  (MEP)
pathway, the native pathway in E. coli. By overexpression of
the  Fpr  and  FldA protein  complex,  which  mediated  electron
transfer  from  NADPH  to  Fe–S cluster  proteins;  by  overex-
pression  of  NADH  kinase  tPos5p  that  converted  NADH  to
NADPH; and by deletion of a promiscuous NADPH-depend-
ent aldehyde reductase (YjgB) that consumed NADPH to in-
crease the supply of NADPH, the productionof protoilludene
was  increased  to  512.7  mg·L−1 [53].  An  overview  of  the
strategies for improving protoilludene production in E. coli is
shown in Fig. 4C. 

Lagopodins

Lagopodins is a type of quinone sesquiterpenes with an-
timicrobial activity [17]. The biosynthetic pathway of lagopod-
in  A  was  first  identified  in Coprinopsis cinerea,  commonly
referred  to  as  the  grey  shag  mushroom  and  the  sole  model
Basidiomycete  for  investigating  fruiting  body  development,
mating, and evolution in mushrooms [54].  Generated from the
common precursor of sesquiterpene, FPP was catalyzed to α-
cuprenene by Cop6 [17], which was identified based on inter-
pretation  of the  whole  genome  sequencing  data  of C. ciner-
eal [55].  Then,  based on the ku70-deficient  strain of C. ciner-
eal, two P450s, Cox1 and Cox2 which participated in the bio-
synthetic  pathway  of  lagopodin  A,  were  identified [56].
However,  kinetic  characterization studies  did not  carried out
due to  the  difficulty  in  preparing  sufficient  amounts  of  sub-
strates and purified P450s [56] (Fig. 5A).

α-Cuprenene,  the  direct  precursor  of  lagopodin  A,  was
successfully  produced  in E. coli, S. cerevisiae and X.
dendrorhous [57]. α-Cuprenene  was  produced  by  the E. coli
strains transformed with the Cop6 gene through addition of a
dodecane organic phase to liquid cultures [58], and the produc-
tion reached to approximately 0.25 mg·L−1 after 48 h. By vir-
tue of  constitutive expression of  Cop6 gene in S. cerevisiae,
the  production  of α-cuprenene  reached  to  6.6  mg·L−1 on  the
second  day  of  culture.  In X.  dendrorhous, α-cuprenene  was
produced via Cop6 gene integrated in the rDNA of the yeast,
inserted in the crtE gene or crtYB gene and caused the disrup-
tion of carotenoid production in rich and minimal media. The

 

 
A

B

M
E

P
 p

a
th

w
a
y

Lagopodins

O

O FPP

Cuprenene synthase

Coprinopsis cinerea

originated Cop6

α-Cuprenene Lagopodin A

P450 monoxygenase

Coprinopsis cinerea

originated Cox1

Coprinopsis cinerea

originated Cox2

GlucoseGlucose

Sugar
Sugar

Glycolysis

Glycolysis
IPP

FPP

FPP

DMAPP
CrtE

CrtYB
GGPP

Phytoene Cuprenene

Cop6

FPS

Astaxanthin

80 mg·L−1

Cuprenene

M
V

A
 p

at
h
w

ay

Cop6
Cuprenene

Cop6
Cop6

IPP

HMBPP

ME-cPP

CDP-MEP

MEP

DXP

CDP-ME

FPP

DMAPP

Copaene
Cop6

0.25 mg·L−1 6.6 mg·L−1

Cuprenene Cuprenene

E. coli host S. cerevisiae host X. Dendrorhous host

Lagopodin A

Glucose

 
Fig. 5    Diagram of lagopodin A biosynthesis pathway and E. coli, S. cerevisiae and X. dendrorhous as the production hosts for
the intermediate cuprenene production
 

YANG Li-Yang, et al. / Chin J Nat Med, 2021, 19(8): 580-590

– 585 –



highest  yield  was  almost  80  mg·L−1 in  YPD  rich  medium
from a  strain  harboring  Cop6  gene  integrated  in  the  rDNA
after  culture  for  96  h;  while  the  maximum  production  of α-
cuprenene  was  20  mg·L−1 in  minimal  medium  from  s  strain
harboring Cop6 inserted in crtYB gene (Fig. 5B). 

Psilocybin

The  indole  alkaloid  psilocybin  (4-phosphoryloxy-N, N-
dimethyltryptamine) is the principal natural product of hallu-
cinogenic Psilocybe mushrooms [59].  Psilocybin,  originally
purified from Psilocybe mexicana mushroom by Hofmann in
1958 [60],  has  been  demonstrated  for  treatmenting  anxiety  in
terminal cancer patients [61, 62] and alleviating the symptoms of
post-traumatic  stress  disorder [63].  The  biosynthetic  pathway
of  psilocybin  was  characterized  by  Fricke et  al. [64]. Psilo-
cybin  biosynthetic  gene  clusters  (psi)  have  been  identified
from Psilocybe cubensis and Psilocybe cyanescens.  Four
psilocybin biosynthesis  enzymes  were  characterized,  includ-
ing  a  new  class  of  fungal  L-tryptophan  decarboxylases
(PsiD),  a  kinase  (PsiK),  a S-adenosyl-L-methionine  (SAM)-
dependent N-methyltransferase (PsiM), and a P450 monooxy-
genase (PsiH). L-Tryptophan was first decarboxylated to give
tryptamine with PsiD, which belongs to the PLP-independent
phosphatidylserine decarboxylase  family  (E.C.  4.1.1.65).  In-
terestingly,  PsiD  also  accepted  4-hydroxy-L-tryptophan  as  a
substrate for decarboxylation.  Subsequent modification reac-
tions  were  mediated  by  PsiH,  PsiK  and  PsiM  in  a  virtually
linear process to biosynthesize psilocybin [64] (Fig. 6A).

The  Hoffmeister  group  produced  psilocybin in  vivo us-
ing  an  eukaryotic  host, Aspergillus  nidulans, at  titers  repor-
ted  near  100  mg·L−1 [65].  Utilizing  the  genes  of  PsiD,  PsiK,

and PsiM from P. cubensis, together with the promiscuity of
the  native E. coli tryptophan  synthase  TrpAB,  Adams et  al.
produced psilocybin  from  4-hydroxyindole  in  model  organ-
ism E. coli BL21 starTM (DE3) [66]. Psilocybin production was
then optimized through the methods including: (1) a defined
three-level copy number library, (2) a random 5-member op-
eron  library,  and  (3)  a  random  125-member  pseudooperon
library.  After  transcriptional  optimization  and  fermentation
condition optimization, the highest psilocybin production was
at about 139 ± 2.7 mg·L−1 (Fig. 6B). 

Viridiflorol

Viridiflorol exhibits multiple biological activities such as
antibacterial,  anti-inflammatory  and  antioxidant  activities,
which  can  be  potentially  applied  in  agricultural  and  food
products  to  replace  current  broad-spectrum  toxic  pesticides
and unhealthy food preservatives [67-69]. In 2016, from the gen-
ome of  the  black  poplar  mushroom, Agrocybe aegerita,  two
novel  viridiflorol  synthase  (VS),  Agr2  and  Agr5  were  first
characterized. Based on this identification, in 2020, Sphaero-
bolus stellatus originated  Sphst_47084  and Dendrothele
bispora originated Denbi1_816208 were selected and experi-
mentally  validated  as  viridiflorol  synthases  by  the  same
group [50].  For  the  biosynthesis  of  viridiflorol,  Shukal et  al.
engineered E. coli cells  to  produce  viridiflorol  directly  from
sugar  by  virtue  of  Agr5 [70].  They selected  modular  pathway
design  and  promoters  of  different  strengths  to  balance  the
pathway  at  the  transcriptional  dimension;  used  regression
models  to  quantitatively  describe  the  reliance  of  metabolite
production on inducer concentrations by detailed titration; de-
signed two ribosomal binding site (RBS) libraries for VS that
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covered a  broad range of  translational  initiation rates  (TIRs)
from 4000 to 18 206 a.u.; introduced random mutations to VS
by error-prone PCR; and created an auxotrophic E. coli strain
by  deleting  three  aromatic-amino-acid  synthesis  genes  from
the  genome.  Finally,  the  engineered E. coli strain  produced
1.4 g·L−1 viridiflorol of dry cells from 10 g·L−1 glucose (Fig. 7). 

Research  Progress  on  the  Isoprene  Building
Blocks in Mushrooms

All  terpenoids  are  based  on  the  same basic  C5 isoprene
building  blocks,  dimethylallyl  pyrophosphate  (DMAPP)  and
isopentenyl  pyrophosphate  (IPP),  which  are  consecutively
fused by  head  to  tail  condensation.  Depending  on  their  car-
bon chain length, these linear phosphorylated alkenes are uni-
versal precursors of mono(C10)-, sesqui(C15)-, di(C20)-, ses-
ter(C25)-  or  tri(C30)-terpenes [71].  FPP,  a  common precursor
for terpenoids, is synthesized by the condensation of three 5-
carbon  isoprenyl  pyrophosphate  units  that  are  derived  from
acetyl-coenzyme  A  (acetyl-CoA)  through  the  common
mevalonate  (MVA)  pathway  and  non-mevalonate  (MEP)
pathway in mushrooms. By transcriptome analysis of Polypo-
rus brumalis,  the  genes  encoding  HMG-CoA  synthase  (EC
2.3.3.10), acetyl-CoA  C-acetyltransferase  (EC  2.3.1.9),  di-
phosphomevalonate decarboxylase (EC 4.1.1.33) and isopen-
tenyl-diphosphate isomerase  (EC  5.3.3.2),  which  are  in-
volved in the MVA pathway, were identified [72]. Meanwhile,
the genes involved in the MEP pathway, including 1-deoxy-d-
xylulose-5-phosphate synthase (EC 2.2.1.7), 1-deoxy-d-xylu-
lose-5-phosphate  reductoisomerase  (EC  1.1.1.267),  2-C-
metyl-d-erythriol  2,  4-cyclodiphosphate  synthase  (EC
4.6.1.12), 4-hydroxy-3-methylbut-2-enyl-diphosphate  syn-
thase (EC  1.17.7.1)  and  4-hydroxy-3-methylbut-2-enyl  di-
phosphate reductase (EC 1.17.7.2) were also identified [72]. In
Stereum  hirsutum,  Flynn et  al. identified  a  new  type  of  fu-

sion protein  between  an  STS  (HS)  and  an  HMG-CoA  syn-
thase (HMGS) domain, referred to here as HS-HMGS, which
catalyzed the second reaction in the MVA pathway and cyc-
lization of FPP reaction [73]. 

Conclusions and Perspective

Mushrooms are an exellent source of natural active com-
pounds and up to now, some natural active compounds have
been discovered. However, the contents of these natural com-
pounds in mushrooms are too low to meet the increasing de-
mand for medical use, and large-scale production by chemic-
al  synthesis  is  not  practical  at  present  due to  the  complexity
of  natural  compounds  and  the  environmental  pollution  of
chemical synthesis. These issues seriously limit further phar-
macological research and new drug development from mush-
rooms. In  the  current  study,  we  summarize  the  recent  pro-
gress on  the  biosynthetic  pathways  and  key  enzymes  in-
volved  in  the  biosynthesis  of mushroom  originated  natural
compounds, so as to lay a foundation for improving the yield
of  natural  compounds  in  mushrooms  through  regulation  of
the  biosynthetic  pathways  and  provide  building  blocks  for
natural compound  production  by  synthetic  biological  meth-
ods.

Many  mushroom  strains  are  difficult  to  grow  under
laboratory  conditions,  requiring  suitable  growth  conditions
and  long  fermentation  time.  Furthermore,  there  is  a  lack  of
genetic  tools  and  techniques  available for  the  transformation
and genetic  manipulation  of  mushrooms.  Therefore,  charac-
terization of  their  biosynthetic  genes  typically  requires  het-
erologous  expression  in  a  more  genetically  tractable  host.
Production  of  mushroom  originated  natural  compounds  by
metabolic  engineering  is  an  attractive  strategy  to  improve
the yield  and much attention  has  focused  on related biosyn-
thetic  enzymes.  In  recent  years,  great  progress  has  been
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achieved  in studies  concerning  the  metabolic  engineering  of
mushroom  originated  natural  compounds  in  microbes.
However, there  are  still  limits  for  the  production  of  mush-
room originated  natural  compounds  in  heterologous  mi-
crobes. From a macro perspective, engineered microbes may
pose  potential  hazards to  biosafety  and  environment  safety.
From a technical perspective, E. coli, the most common host
for  biosynthesis,  appears  imperfect  for  the  expression  of
genes  derived  from  eukaryotic  donors,  where  post-transla-
tional modifications are not required for full catalytic activity.
From an implementation perspective, there is a long way for
this type of fundamental research to mass production for mar-
ket demand.  These  issues are  the  urgent  challenges  for  syn-
thetic biologists in the coming future.

In general, microbes as the production host, provides an
alternative  and  attractive  approach  for  the  production  of
mushroom originated  natural  compounds.  This  review  sum-
marizes the latest research progress on the biosynthetic path-
ways of mushroom originated natural  active compounds and
synthetic biology intervention on the synthesis of natural act-
ive compounds, which lays a foundation for the screening of
new  natural  active  compounds  from  mushrooms,  provides
new thoughts  on  mushroom  studies,  and  improves  the  pro-
duction of other active compounds by virtue of microbes. 
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mylcysteine sulfoxide; A-CoA, acetyl-CoA; AA-CoA, aceto-
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cyclodiphosphate  synthase;  IspG,  4-hydroxy-3-methylbut-2-
enyl-diphosphate  synthase;  IspH,  1-hydroxy-2-methyl-
butenyl-4-diphosphate reductase;  MvaE,  bifunctional  aceto-
acetyl-CoA thiolase and HMG-CoA reductase; MvaS, HMG-
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