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[ABSTRACT] The tubers and roots of Aconitum (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treat-
ment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natur-
al products mainly extracted from Aconitum plants, Aconitum alkaloids have complex chemical structures and exert remarkable biolo-
gical activity, which are mainly responsible for significant effects of Aconitum plants. The present review is to summarize the progress
of the pharmacological, toxicological, and pharmacokinetic studies of Aconitum alkaloids, so as to provide evidence for better clinical
application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of Aconitum alkaloids were collec-
ted from different scientific databases (PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science) using the phrase Acon-
itum alkaloids,  as  well  as  generic  synonyms. Aconitum alkaloids  are  both  bioactive  compounds  and  toxic  ingredients  in Aconitum
plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and
immune system and anti-cancer effects. Notably, Aconitum alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity,
which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux
transporters (ETs) are closely related to the low bioavailability of Aconitum alkaloids and play an important role in their metabolism
and detoxification in vivo.
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Introduction

Aconitum alkaloids are bioactive components with com-
plex chemical structures that mostly exist in plants of the two
genera Aconitum and Delphinium [1, 2], including the  charac-
teristic  active  and  toxic  components  of  diterpene  alkaloids.
According  to  their  chemical  skeletons,  diterpene
alkaloids can be divided into C18-, C19-, and C20-diterpene al-
kaloids,  and  their  chemical  structures  are  presented  in
Fig.  1.  C19-Diterpene  alkaloids,  the  main  types  of Aconitum
alkaloids, include aconitines [3], lycoctonines [4], pyro-types [5],
rearranged-types [6], 7, 17-seco-types [7], and lactone types [8].
Based on the esterification of hydroxyl groups at C8 and C14

sites in their structures, aconitines can be further classified in-
to diester-diterpenoid alkaloids (DDAs), monoester-diterpen-
oid  alkaloids  (MDAs),  and  hydramine  diterpenoid  alkaloids
(HDAs) [9-11]. With the sequential hydrolysis of ester bonds at
C8 and C14,  their  toxicity was substantially reduced [12, 13].  In
contrast,  C18-diterpene  alkaloids  are  the  least  distributed
Aconitum alkaloids,  and  classified  into  lappaconitines  and
ranaconitines [14-16]. Compared with lappaconitines, the hydro-
gen  at  C7 site  of  ranaconitines  was  substituted  by  oxygen-
containing  groups.  Furthermore,  the  chemical  skeletons  of
C20-type  diterpene  alkaloids  are  complex  and  diverse,  with
the  common structural  types  of  hetisines [17, 18],  hetidines [19],
atisines [20],  denudatines [21],  veatchines [22] and napellines [23].
For exmaple, songorine is a typical active napelline-type C20-
diterpene alkaloid extracted from Aconitum carmichaeli [24].

A large number of studies have confirmed that Aconitum
alkaloids  are  the  characteristic  bioactive  components  of
Aconitum species,  which  exhibit substantial  analgesic,  anti-
inflammatory,  antioxidant  and  anti-tumor  activities [25, 26].
However,  due  to  a  narrow  therapeutic  window,  they  may
cause toxicity to  the heart,  liver,  muscle tissues and nervous
system [27, 28].  Thus,  the  use  of Aconitum in herbal  prepara-
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tions is limited in Europe and the United States [29]. In recent
years, to elucidate  the  absorption  and  metabolism  character-
istics of active or toxic alkaloids in the body, pharmacokinet-
ic  studies  have been  widely  performed,  which  indicate that
Aconitum alkaloids can be quickly absorbed and widely dis-
tributed  in  the  body [30]. But  the  bioavailability  of Aconitum
alkaloids  is  extremely  low,  while highly  toxic  alkaloids  can
be converted  into  less  toxic  metabolites  and soluble  derivat-
ives [31, 32],  playing an important role in their metabolism and
detoxification in vivo.

Recently,  many  efforts  have  been  devoted  to  reviewing
the phytochemical  characteristics of Aconitum and  its  active
components  as  well  as related pharmacological  activity  and
analytical methods. For instance, Zhou et al. [26] presented an
investigation  concerning the  safety  application  of Aconitum
by  summarizing  the  phytochemical  and  pharmacological
activity and toxicity of Aconitum. Furthermore, Elshazly M et
al. [33] focused  on  liquid  chromatography/mass  spectrometry
analysis of Aconitum and its Chinese herbal medicine. Wu et
al. [32] illuminated  the  application  of Fuzi as  personalized
medicine from the respect of pharmacokinetics. So far, there
has  been  no  comprehensive  and  systematic  review of Acon-
itum alkaloids. Therefore, in the current review, we summar-
ize the up-dated, comprehensive, and systematic information
about  the  pharmacological  activity  and  toxicity  of Aconitum
alkaloids in the cardiovascular system, nervous system, liver,
and  other  organs,  as  well  as  the  absorption  and  metabolic
characteristics of Aconitum alkaloids, and discuss the toxicity-
efficacy  relationship  and  pharmacokinetics  of Aconitum al-

kaloids, so  as  to  provide evidence  for  further  development
and clinical application of Aconitum drugs. 

Pharmacological Activities of Aconitum Alkaloids
 

Effects on the cardiovascular system
Aconitum plants have long been used for the treatment of

heart  failure  and  poor  circulation [29, 34],  and Aconitum alkal-
oids are  the  main  active  ingredients  for  cardioprotective  ef-
fects (Table 1). For instance, Fuzi total alkaloid (FTA) signi-
ficantly decreased myocardial damage and infract size in rats
with myocardial  infraction,  which  stabilized  the  cardiomyo-
cyte membrane  structure  through improving  myocardial  en-
ergy metabolic abnormalities, phospholipids levels and distri-
bution  patterns [35].  Moreover,  fuziline  and  neoline  showed
pronounced  activity  against  pentobarbital  sodium  induced
damage  in cardiomyocytes,  which  was  characterized  in re-
stored  beating  rhythm  and  improved  cell  vitality [36].  C19-
Diterpenoid  alkaloids  such  as  mesaconine,  hypaconine  and
beiwutinine showed  remarkable  cardiac  effects  on  the  isol-
ated bullfrog hearts.  Notably,  the protective effects  of  mesa-
conine  were  achieved  by  improving  the  inotropic  effect  and
left  ventricular  diastolic  function  in  rats  with  myocardial
ischemia-reperfusion injury [37]. Higenamine, a benzyltetrahy-
droisoquinoline  alkaloid,  showed  inhibitory effects  on  both
human  and  rat  platelet  aggregation,  which  was  achieved  by
increasing the recovery rate in a mouse model of acute throm-
bosis, and lowering the weight of thrombus in an arterio-ven-
ous  shunt  (AV-shunt)  rat  model[38].  Meanwhile,  higenamine
was proved to increase the fibrinogen level, decrease fibrino-
gen/fibrin  degradation  product  (FDP)  level  and  prothrombin
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time (PT)  in  a  model  of  disseminated  intravascular  coagula-
tion  (DIC) in  rats[39].  Mesaconitine,  as  another  active Acon-
itum alkaloid,  induced  vasorelaxation  in  the aorta  of  rats
through promoting  Ca2+ influx  and  activating  nitric-oxide
synthase [40].  Furthermore,  hyaconitine  targeted  the  histone
deacetylase-high mobility group box-1 pathway to inhibit the
oxidized low-density  lipoprotein  (ox-LDL)-induced apoptos-
is  of  endothelial  cells [41].  According to the structure-activity
relationship data, the structures of Aconitum alkaloids neces-
sary for cardiac activity included an α-methoxyl or hydroxyl
group at C-1, a hydroxyl group at C-8 and C-14, α-hydroxyl
group at  C-15,  and a secondary amine or N-methyl group in
ring  A.  Additionally,  an α-hydroxyl group  at  C-3  also  con-
tributed to cardiac activity [42, 43].

Fuzi is  the  processed  lateral  roots  of Aconitum carmi-
chaeli Debx. (Ranunculaceae), and has been used in tradition-
al Chinese medicine for the treatment of chronic heart failure,
hypotension, coronary heart disease and acute myocardial in-
farction owing to its remarkable effects of restoring yang and
saving  adversity [29].  A  large  number  of  studies  have  shown
that the cardiotonic effects of Aconitum alkaloids, the charac-

teristic  active  components  of Fuzi,  are  multi-targeted,  which
are achieved by  restoring  myocardial  cells  vitality,  improv-
ing the inotropic effect and left ventricular diastolic function,
and inhibiting platelet aggregation. Therefore, the clinical ap-
plication of Fuzi and Aconitum drugs in the treatment of car-
diovascular diseases is closely related to the cardiotonic bio-
activity of Aconitum alkaloids. 

Effects on the nervous system
The  nervous  system  can  monitor  and  respond  to  the

changes in the internal and external environment,  participate
in critical physiological processes such as learning, memory,
cognition  and  initiate  all  autonomous  movements [44, 45].  A
large number of studies have confirmed that Aconitum alkal-
oids exert  remarkable  protective  effects  on  the  nervous  sys-
tem  (Table  2).  Neuropathic  pain  is  a  highly  debilitating
chronic pain directly caused by various lesions or diseases af-
fecting the somatosensory nervous system [46], which is char-
acterized  by  spontaneous  ongoing  pain  and  hyperalgesia [47].
Aconitum plants  have  been  widely  used  for  analgesia  since
ancient  time.  C18-Diterpenoid  alkaloids  (weisaconitines  D)
isolated  from Aconitum  weixiense and  two  sulfonated  C20-

 
Table 1    Effects of Aconitum alkaloids on the cardiovascular system

Component/Dose/Duration Cell type/Animal model Effects Mechanisms Ref.

Radix Aconiti Lateralis Preparata
extract (RAE) and Fuzi total
alkaloid (FTA) 1.6, 0.8, and 0.4
g·kg−1 for 14 d

Rats with myocardial
infarction

Anti-myocardial
infarction effect

Improve myocardial energy metabolic
abnormalities, change phospholipids
levels and distribution patterns, and
stabilize the structure of cardiomyocyte
membrane

[35]

Fuziline and neoline 10, 1, and
0.1 μmol·L−1 for 24 h

Neonatal rat
cardiomyocytes

Against pentobarbital
sodium induced damage
in cardiomyocytes

Recover beating rhythm and increase
cell viability

[36]

Mesaconine and hypaconine 5
mg·mL−1 for 30 s (isolated
bullfrog hearts), 1 nmol·L−1 for 10
min (isolated rat hearts), and
beiwutinine 5 mg·mL−1 for 30 s
(isolated bullfrog hearts)

Isolated bullfrog
hearts,and isolated rat
hearts after ischemia-
reperfusion

Optimal cardiac action on
isolated bullfrog hearts
and inhibiting myocardial
ischemia-reperfusion
injury in isolated rat
hearts (measconine)

Increase the average rate of amplitude,
and improve the inotropic effect and
left ventricular diastolic function

[37]

Higenamine 50 and 100 mg·kg−1

for 3 d (mice)

ADP, collagen and
epinephrine-induced
human and rat platelet
aggregation, and collagen
and epinephrine induced
acute thrombosis in mice

Antiplatelet aggregation
and anti-thrombotic
effects

Inhibit epinephrine-induced platelet
aggregation, increase the recovery rates
from acute thrombotic challenge in
mice, and lower the weight of thrombus
within the arteriovenous shunt (AV-
shunt) tube of rats

[38]

Higenamine 10, and 50 mg·kg−1

for 10 d

A disseminated
intravascular coagulation
(DIC) model in rats

Therapeutic potential for
DIC and/or accompanying
multiple organ failure

Ameliorate the decrease of fibrinogen
level in plasma, increase
fibrinogen/fibrin degradation product
(FDP) level and prolong prothrombin
time (PT)

[39]

Mesaconitine 30 mmol·L−1 for
0−40 min Rat aorta Relaxation in the aorta

Stimulate Ca2+ influx via the Na+/Ca2+

exchangers in endothelial cells [40]

Hypaconitine 24, 48, and 90
μmol·L−1 for 21 h

Oxidized low-density
lipoprotein (oxLDL)
induced endothelial cells

Suppress the apoptosis of
endothelial cells

The histone deacetylase-HMGB1
pathway

[41]

C19-Diterpenoid alkaloids 2.5 or 5
mg·mL−1 for 30 s or 10
mmol·mL−1 for 30 s

Isolated bullfrog hearts
Structure-cardiac activity
relationship

Increase the average rate of amplitude [42, 43]
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Table 2    Effects of Aconitum alkaloids on the nervous system

Component/Dose/Duration Cell type/Animal model Effects Mechanisms Ref.

Weisaconitines D 50, 100 and
200 mg·kg−1

A mouse model of
CH3COOH-induced writhing

Analgesic activity
Inhibit acetic acid-induced
writhing in mice

[48]

Aconicatisulfonines A and B 0.1, 0.3
and 1.0 mg·kg−1 Acetic acid-induced mice Analgesic activity

Inhibit acetic acid-induced
writhing in mice

[49]

Songorine, napelline, mesaconitine,
hypaconitine and 12-epinapelline N-
oxide 0.025 mg·kg−1 for 5 d

A mouse model of
acetylcholine cramp and
inflammatory hyperalgesia
induced by naloxone Freund’
s adjuvant

Analgesic activity

Prolong the time before
manifestation of nociceptive
reaction and reduce the number
of cramps

[50]

Guiwuline 15 mg·kg−1 Hot-plate method induced
mice

Analgesic activity
Improve the results of the hot-
plate test in mice (55 °C)

[51]

Neoline 6 mg·kg−1·d−1 for 5 and 7 d Dorsal root ganglion neurons
isolated from normal mice

Alleviate neuropathic
pain

Alleviate the oxaliplatin-induced
reduction of neurite elongation
and inhibit the induction of
mechanical and cold hyperalgesia

[52]

Neoline 10 mg·kg−1·d−1 for 7, 9 and
21 d

A mouse model of
mechanical allodynia

Relieve neuropathic
pain

Ameliorate the mechanical
threshold of von Frey test and
eural plasticity

[53]

Isotalatizidine 0.1, 0.3 and 1 mg·kg−1

for 30 min, 1, 2 and 4 h;
isotalatizidine 25 μmol·L−1 for 1 h

A mouse model of CCI-
induced neuropathic pain,
and BV-2 and primary
microglial cells

Attenuate the
hypersensitivity of
somatic pain

Stimulate the expression of
microglial dynorphin A mediated
by the ERK/CREB signaling
pathway

[54]

Lappaconitine 0.3, 0.7, 2 and
7 mg·kg−1 for 1 h interval

A rat model of neuropathic
pain and bone cancer pain,
primary microglial cells and
neurons

Antihypersensitivity
in chronic pain

Stimulate the expression of spinal
microglial dynorphin A

[55]

Bulleyaconitine A 10, 30, 100, 300
and 1000 ng for 1 h (rat) or 100
nmol·L−1 for 2 h (cell)

A rat model of neuropathic
pain and bone cancer pain,
primary neuron and glial
cells

Block painful
neuropathy caused by
the spinal nerve

Activate spinal k-opioid receptors
and stimulate the expression of
dynorphin A in spinal microglia

[56]

Bulleyaconitine A 10 μmol·L−1 for
3 ms HEK293t cells

Adjuvant for
prolonged cutaneous
analgesia

Inhibit Nav1.7 and Nav1.8 Na+

currents [57]

Bulleyaconitine A 5 nmol·L−1 for
15 min Dorsal root ganglion neurons

Antineuropathic pain
effect

Block tetrodotoxin-sensitive
voltage-gated sodium (Nav1.7
and Nav1.3) in dorsal root
ganglion neurons

[58]

Bulleyaconitine A 10 μmol·L−1 for
4 ms Clonal GH3 cells

Treat chronic pain
and rheumatoid
arthritis

Reduce neuronal Na+ currents [59]

Pyroaconitine, ajacine,
septentriodine, and delectinine 10
μmol·L−1 for 8 ms

CHO cells
Potential anti-
epileptic activity

Inhibit Nav1.2 channel [60]

Aconorine and lappaconitine 50, 75
and 100 μmol·L−1 for 15 min;
heteratisine and hetisinone 50, 75,
100, and 125 μg·mL−1 for 30 min;
heterophyllinine A and
heterophyllinine B 0.2 mmol·L−1 for
15 min

ACh and BCh
Cholinesterase
inhibitory effect

- [64, 65, 67]

Hemsleyaline IC50 471 ± 9 μmol·L−1

for 30 min; kirisine G, kirisine H,
gigaconitine and aconicarmichinium
C 10 μL for 30 min

ACh
Acetylcholinesterase
inhibitory effects

- [15, 66]
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diterpenoid  alkaloid  iminiums  isolated  from  a  water  extract
of  the Aconitum carmichaelii lateral  roots  produced  obvious
analgesic  activities  against  acetic  acid-induced  mice  writh-
ing [48, 49].  Diterpene  alkaloids  extracted  from Aconitum
baikalensis presented  substantial  analgesic  effects  on  the
naloxone-induced  acetylcholine  cramp  model  and  rats  with
inflammatory hyperalgesia induced by Freund’s adjuvant [50].
Furthremore,  a  novel  franchetine  type  of  norditerpenoid,
which  was  isolated  from  the  roots  of Aconitum  carmichaeli
Debx,  showed  potential  analgesic  activity  and  less  toxi-
city [51].  Neoline,  the  active  ingredient  in  processed  aconite
root, alleviated  oxaliplatin-induced  murine  peripheral  neuro-
pathy [52] and mechanical hyperalgesia induced by partial liga-
tion  of  the  sciatic  nerve [53].  Isotalatizidine  exerted  analgesic

effects by activating the ERK1/2-CREB pathway and mediat-
ing the expression of dynorphin A in microglia cells [54]. An-
other  research  proved  that  lappaconitine  and  bulleyaconitine
A  exerted  anti-hypersensitivity  in  spinal  nerve  ligation-in-
duced  neuropathic  rats  through  stimulating  spinal  microglia
to express dynorphin A [55, 56].  In addition,  bulleyaconitine A
also  played  a  role  in  anti-neuropathic  pain via blocking
Nav1.7 and Nav1.3 channels to reduce the hyper-excitability
of dorsal root ganglion neurons caused by nerve injury [57, 58].
Bulleyaconitine A also displayed long-acting local anesthetic
properties  both in  vitro and in  vivo,  and  often  used  in  the
treatment  of  chronic  pain [59].  Diterpene  alkaloids  isolated
from  the  roots  of Aconitum  moldavicum showed  significant
inhibitory effects  on the Nav 1.2 channel [60], suggesting po-

Continued        
Component/Dose/Duration Cell type/Animal model Effects Mechanisms Ref.

Higenamine 10 μmol·L−1

and cnryneine 100
μmol·L−1

Mouse phrenic nerve-
diaphragm preparation

Higenamine augments the
release of both nerve-
evoked and spontaneous
ACh, and muscle tension.
Coryneine reducea the
nerve-evoked release of
ACh

Higenamine increases ACh release
through activation of β-adrenoeptor and
cnryneine and depresses ACh release
by preferentially acting at the motor
nerve terminal

[68]

Aconitine 3 × 10−6 mol·L−1

per 10 s

Mechanically dissociated
ventromedial
hypothalamic (VMH)
neurons in rats

Modulate the membrane
excitability of VMH
neurons in rats

Activate voltage-dependent Na+

channels, depolarize the presynaptic
membrane, activate voltage-dependent
Ca2+ channels and increase
intraterminal Ca2+ concentration

[69]

Songorine 5, 25, and 100
μg·kg−1 for 5 d

Scopolamine-traumatized
mice

Correct scopolamine-
induced abnormalities of
mnestic function

Improve conditioned passive avoidance
response (CPAR) and normalize
behavior activities

[70]

Napelline and songorine,
0.025 mg·kg−1 for 5 d

Albino outinbred mature
female mice and a mouse
model of serotonin-
induced edema

Antidepressant and
antiexudative effects

Reduce the time of immobilization in
the tail suspension test and modulate
the sensitivity to serotonin

[75]

Diterpenoid alkaloids from
the roots of Aconitum
pendulum Busch 25
μmol·L−1

- Neroprotective activity
With remarkable disaggregation
potency on the Aβ1−42 aggregates

[76]

Bullatine A 1, 10, 20 and
50 μmol·L−1 for 24 h

ATP-induced BV-2 cells
Anti-rheumatic, anti-
inflammatory and anti-
nociceptive effects

Attenuate ATP-induced BV-2 microglia
death/apoptosis via the P2X receptor
pathway

[77]

Diterpenoid alkaloids from
the Lateral Root of
Aconitum carmichaelii 10
μmol·L−1

Serum deprivation-
induced PC12 cells

Treat neurodegenerative
disorders

Increase cell viability [78]

Songorine 0.1−300
mmol·L−1

Triton-treated synaptic
membranes of CA1
hippocampal neurons in
rats

Enhance the excitatory
synaptic transmission in
rat hippocampus

Activate the D2 receptor (for excitation)
and block the postsynaptic GABAA

receptor (for disinhibition)
[79]

Songorine 0.25 and 2.5
mg·kg−1 for 5 d

Vogel’s conflict test Anxiolytic activity
Increase the number of punished drinks
and produce higher values of behavioral
activity parameters

[80]

Talatisamine 300 μmol·L−1 Dissociated CA1
pyramidal neurons

Alzheimer’s disease
Delay rectifier K+ channel in rat
hippocampal neurons [81]
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tential anti-epileptic activity.
The cholinergic system is a major constituent of the cent-

ral  nervous  system,  which  is  closely  related  to  learning,
memory and sensory information [61, 62]. Acetylcholine (ACh)
is  the  neurotransmitter  used  by  cholinergic  neurons  at  the
neuromuscular  junctions  and  in  the  spinal  cord,  memory-re-
lated circuits  in the brain and parasympathetic nerve termin-
als,  which  plays  a  crucial  role  in  the  peripheral  and  central
nervous systems [62, 63]. Acetylcholinesterase can degrade acet-
ylcholine, block the excitatory effect of neurotransmitters on
the post-synaptic membrane, and ensure the normal transmis-
sion  of  nerve  signals [62]. According  to  recent  reports,  diter-
penoid  alkaloids  in Aconitum such as  aconorine,  lappaconit-
ine,  and  heteratisine  exerted  significant  anti-cholinesterase
activity [64, 65]. In addition, the new diterpenoid alkaloids isol-
ated  from Aconitum also  showed  probable  inhibitory  effects
against  cholinesterase [66, 67].  Moreover,  the  four  diterpenoid
alkaloids extracted from the roots of Aconitum kirinense Na-
kai  exhibited  moderate  anti-acetylcholinesterase  activity  and
neuroprotective  activity [15]. Interestingly,  higenamine  pro-
moted the release of ACh via activating β-adrenoeptor, while
cnryneine preferentially acted at motor nerve terminals to in-
hibit ACh release, exerting antagonistic effects on the release of
ACh [68].  In  addition,  aconitine  depolarized  the  presynaptic
membrane via activating  voltage-dependent  Na+ channels,
and enhanced the spontaneous transmitter release of the pre-
synaptic  nerve  terminals  by  activating  voltage-dependent
Ca2+ channels, which played an important role in modulating
the  membrane  excitability  of ventromedial  hypothalamic
(VMH)  neurons  in  rats [69]. Repeated  administration  of  son-
gorine improved  conditioned  passive  avoidance  response
(CPAR)  conditioning  and  normalized  behavioral  activities
throughout  the  entire  observation  period,  thereby  correcting
scopolamine-induced abnormality of mnestic function [70].

Neuroinflammation, chronic oxidative stress and neuron-
al damage  contribute  to  the  onset  of  neurodegenerative  dis-
eases  such  as  Parkinson’s  disease,  Alzheimer’s  disease,
amyotrophy lateral  sclerosis  as  well  as  neuropsychiatric  ill-
nesses such as depression and autism spectrum disorder [71-74].
Current  research  confirmed  that  the  diterpenoid  alkaloids  of
Aconitum exhibited antidepressant properties through regulat-
ing the sensitivity to serotonin [75], and they also showed sig-
nificant disaggregation potency on the Aβ1−42 aggregates, in-
dicating  probable  inhibitory  effects  against  Alzheimer’s dis-
ease [76].  Bullatine  A,  a  diterpenoid  alkaloid  of  the  genus
Aconitum,  attenuated  ATP-induced  BV2 microglia  death/ap-
optosis via the  P2X  receptor  pathway,  thereby
exerting neuroprotective effects [77]. Some other diterpene al-
kaloids  extracted  from  the  lateral  root  of Aconitum carmi-
chaelii also  exerted neuroprotective  effects [78].  For  instance,
songorine  was  proved  to  be  a  non-competitive  antagonist  at
the GABAA receptor in the brain of rat, which resulted in po-
tential therapeutic effects on amyotrophy lateral sclerosis [79].
Moreover,  songorine  also  exhibited  significant  anxiolytic
activity [80].  In addition,  talatisamine was a potent blocker of

delayed  rectifier  K+ channels  in  rat  hippocampal  neurons,
which was beneficial for Alzheimer’s treatment [81].

Aconitum has also been widely used as analgesic and an-
tispasmodic  drugs  since  ancient  times,  and Aconitum alkal-
oids exert  prominent  central  analgesic effects  without  addic-
tion, which are considered as the potential active ingredients
of  new analgesics.  At  present,  Wutou  decoction  and  Shenfu
injection show significant  therapeutic  effects  on  angina  pec-
toris and pain of joints [29, 82]. In addition, Aconitum alkaloids,
as a type of naturally active ingredients with significant anti-
cholinesterase  activity  and  neuroprotective  effect,  have
shown  potential  therapeutic  effects  on  a  variety  of  nervous
system diseases, and their clinical therapeutic effects remains
to be further studied. 

Effect on the immune system
The immune  system,  consisting  of  immune  organs,  im-

mune cells  and immune factors,  is  a  major  defense mechan-
ism to protect host homeostasis against the invasion of patho-
gens,  toxins,  and  allergens.  However,  if  the  immune  system
cannot  distinguish  between  itself  and  non-self,  it  will  cause
excessive  damage  to  own tissues [83, 84], resulting   in  autoim-
mune  diseases  such  as  systemic  lupus  erythematosus [85],
rheumatoid  arthritis [86],  and  cold  agglutinin  disease [87].  The
protective  effect  of Aconitum alkaloids on  the  immune  sys-
tem has been extensively studied (Table 3).

A large volume of studies indicated that Aconitum diter-
pene alkaloids partly inhibited the proliferation and NO pro-
duction in LPS-induced RAW264.7 cells [88-92]. Aconitine in-
hibited RANKL-induced osteoclast differentiation and the ex-
pression  of  osteoclast-specific  genes via suppressing  NF-κB
and NFATc1 activation in RAW264.7 cells [93]. What’s more,
total alkaloids of Aconitum tanguticum improved the patholo-
gical changes in the lungs, and reduced inflammatory cell in-
filtration  and  pro-inflammatory  cytokine  release via inhibit-
ing the NF-κB activation in LPS-induced acute lung injury in
rats [94].  14-O-acetylneoline,  isolated  from Aconitum lacini-
atum, showed  anti-inflammatory  effect  on  colitis  mice  char-
acterized  by  decreasing  weight  loss,  inhibiting  macroscopic
pathology  and  histological  inflammation  and  reducing  the
colonic  IFN-γ mRNA  levels [95].  Moreover, Aconitum alkal-
oid  suppressed  the  proliferation  and  migration  of  SW982
cells  through  inhibiting  Wnt-5a  mediated  JNK  and  NF-κB
signaling pathways [96] and also inhibited ConA- and LPS-in-
duced  splenocyte  proliferation [97]. Benzoylaconitine  sup-
pressed IL-1β-induced expression of IL-6 and IL-8 via inhib-
iting the activation of the MAPK (ERK, JNK, and p38), Akt,
and NF-κB pathways in SW982 cells [98]. In type II collagen-
induced arthritis  (CIA)  mice,  higenamine  reduced the  eleva-
tion of clinical arthritis scores and inhibited inflammatory re-
actions,  oxidation damage and caspase-3/9  activation,  which
was  possibly  related  to  the  heme  oxygenase  (HO)1  and
PI3K/Akt/Nrf2 signaling pathways [99]. In addition, higenam-
ine also increased myelin sparring and enhanced spinal  cord
repair process via promoting M2 activation macrophage, and
reduced Hmgb1 expression dependent  on HO-1 induction in
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Table 3    Effects of Aconitum alkaloids on the immune system

Component/Dose/Duration Cell type/Animal model Effects Mechanisms Ref.

Nagarine A 72.63 ± 0.39 μmol·L−1

for 24 h; nagarine B 52.98 ±
0.50 μmol·L−1 for 24 h

LPS-induced RAW264.7
cells

Anti-inflammation Inhibit the production of IL-6 [88]

Bulleyanine A 10, 20 and
40 μmol·L−1 for 24 h

LPS-induced RAW264.7
cells

Anti-inflammation Inhibit the production of NO [89]

Mesaconitine, hypaconitine,
napelline, songorine and 12-
epinapelline N-oxide,
0.025 mg·kg−1 for 5 d

Carrageenan-induced
acute inflammation in
mice, histamine-induced
inflammation in mice,
and acetic acid-induced
peritonitis in mice

Anti-inflammation
Inhibit inflammation at various stage
and show highly anti-exudative
activity

[90]

Szechenyianine B, szechenyianine
C, N-deethyl-3-acetylaconitine,
and N-deethyldeoxyaconitine
0.05, 0.1, 0.5, 1, 5 and
10 μmol·L−1 for 18 h

LPS-induced RAW264.7
cells

Anti-inflammation Inhibit the production of NO [91]

Lappaconitine and puberanine,
100 μg·mL−1 for 30 min

Zymosan activated
serum-induced
neutrophils

Anti-inflammation Inhibit the production of superoxide [92]

Aconitine 0.125 and 0.25
mmol·L−1 for 1, 2, 8, 24 h,
4 d or 7 d

RANKL-induced
RAW264.7 cells

Inhibit RANKL-induced
osteoclast differentiation

Inhibit the RANKL-induced activation
of NF-κB and NFATc1 and suppress
the expression of osteoclast specific
genes and DC-STAMP

[93]

Total alkaloids of Aconitum
tanguticum 30 and 60 mg·kg−1

for 6, 12 and 24 h

LPS-induced acute lung
injury in rats

Exhibit potent protective
effects on LPS-induced
acute lung injury in rats
through anti-
inflammation

Increase the value of PaO2 or
PaO2/FiO2, decrease myeloperoxidase
activity and TNF-α, IL-6 and IL-1β
leveles in BALF and inhibit NF-κB
activation in lung tissue

[94]

14-O-acetylneoline 10, 20 and
50 μg for 3 d

TNBS-induced colitis in
mice

Mitigate inflammation
against ulcerative colitis

Significantly lower the clinical score,
macroscopic pathology and grades of
histological inflammation and reduce
colonic IFN-γ mRNA level

[95]

Alkaloids extract removed
lappaconitine from Aconiti
Sinomontani Radix (MQB) 1,
10 and 20 μg·mL−1 for 12, 24
and 36 h

SW982 cells
Inhibit the proliferation
and migration of human
synovial fibroblast cells

Inhibit the mRNA expression of
Wnt5a, Runx2, Bmp2 and MMP3 and
inhibit the phosphorylation of JNK and
NF-κB p65 and the expression of
MMP3

[96]

Szechenyianine E, 8-O-methyl-14-
benzoylaconine,and spicatine A
0.16, 0.8, 4, 20 and 100 μmol·L−1

for 48 h

ConA-induced or LPS-
induced splenocytes

Suppress immune for the
treatment of autoimmune
diseases

Inhibit splenocyte proliferation [97]

Benzoylaconitine 5 and 10
μmol·L−1 for 1, 6, 12 and
48 h

IL-1β-stimulated SW982
cells

A potential therapeutic
agent for rheumatoid
arthritis treatment

Inhibit the expression of IL-6 and IL-8
gene and protein, decrease the
activation of MAPK and the
phosphorylation of Akt and inhibit the
degradation of IκB-α and the
phosphorylation and nuclear
transposition of p65 protein

[98]

Higenamine 10 mg·kg−1 for
14 d

Type II collagen induced
arthritis mice

Ameliorate collagen-
induced arthritis

Resuppress inflammatory reactions,
oxidation damage and caspase-3/9
activation, increase HO-1 protein
expression and upregulate of the
PI3K/Akt/Nrf-2 signaling pathway

[99]
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spinal  cord  injury  mice [100].  Aconitine  ameliorated  the  renal
pathology through inhibiting pro-inflammatory cytokines and
inflammation in the kidneys, and decreasing blood leucocyte
counts  and  the  level  of  anti-dsDNA  antibody  in  serum  in  a
pristane-induced murine  model,  which  indicated  that  aconit-
ine  is  a  potential  compound  for  the  treatment  of  systemic
lupus erythematosus [101]. 

Anti-cancer effects
Diterpenoid  alkaloids  isolated  from Aconitum plants

have  great  potential  to  treat  cancer  in  many in  vitro experi-
ments  (Table  4).  Accumulating  studies  showed  that Acon-
itum diterpenoid alkaloids  were  effective  against  prolifera-
tion in human cancer cell lines [102-108], which might be caused
by activation of p38 MAPK-, death receptor-, mitochondrial-,
caspase-meditated  apoptosis [109].  C19 Diterpenoid  alkaloids
significantly  inhibited  the  growth  of  HepG2  cells  possibly
through blocking the cell cycle at the G1/S phase, up-regulat-
ing  the  expression  of  B-cell  lymphoma  2  (Bcl-2)-associated
X (Bax)  and  caspase-3  protein and  down-regulating the  ex-
pression of Bcl-2 and CCND1 [108, 110]. Furthermore, aconitine
inhibited the proliferation of hepatocellular carcinoma cells in
the context  of  ROS-induced  mitochondrial-dependent  apop-
tosis [111]. Meanwhile, aconitine also up-regulated the expres-
sion  of  cleaved-caspase-3,  cleaved-caspase-9,  and  cleaved
poly (ADP-ribose) polymerase 1 (PARP1), which induced the
apoptosis  in  Miapaca-2  and Panc-1  cells,  producing anti-hu-
man  pancreatic  cancer  activity [112].  Hpyaconitine  inhibited
transforming  growth  factor-β1  (TGF-β1)-induced  epithelia-
mesenchymal transition,  and  adhesion,  migration  and  inva-
sion  of  lung  cancer  cells  by  inhibiting  the  NF-κB  signaling
pathway [113].  Moreover,  alkaloids  from Aconitum  taipeicum
showed  anti-leukemia  activity [114, 115].  Therefore, Aconitum
alkaloids played potential inhibitory effects on many types of
cancer. 

Other pharmacological effects
Aconitum alkaloids also showed antimicrobial, antivirus,

antiplasmodial, antioxidant and reparative activities. The new
C19-diterpene  alkaloids  extracted  from Aconitum  duclouxii
such as ducloudines C, D, E and F exhibited good biological
activities  against  pathogenic  fungi  and  pathogenic  bacte-
ria [116, 117].  Norditerpenoid  alkaloids  from the  roots  of Acon-

itum  heterophyllum Wall  were  proved  to  have  antibacterial
activity [118].  Carmichaedine,  a  new  C20-diterpenoid  alkaloid
from the lateral roots of Aconitum carmichaeli, exhibited po-
tent antibacterial activity against Bacillus subtilis [119]. Mean-
while,  demethylenedelcorine  and  18-O-methylgigactonine
isolated  from Aconitum  sinomontanum Nakai  were  proved
with pesticidal activities against Mythimna separata [120]. Oth-
er studies concluded that Aconitum alkaloids showed little in-
hibitory  effect  on Escherichia  coli and Helicobacter  pylori,
but exerted potential inhibitory effects on the growth of Sta-
phylococcus aureus [121, 122].

Moreover,  tanguticulines  A and E extracted from Acon-
itum tanguticum inhibited H1N1-induced cytopathic changes,
exhibiting obvious antivirus activities in vitro [123]. The major
alkaloid  from Aconitum  orochryseum,  atisinium  chloride,
proved  moderate  antiplasmodial  activity  against  the  TM4
strain  and the  K1 strain  of Plasmodium falciparum [124].  The
mixture  of  diterpene  alkaloids  of Aconitum  baicalense
showed significant regenerative hemostimulating effects on a
model  of  cytostatic  myelosuppression,  which  were  achieved
by  activating hematopoietic  progenitor  cells [125].  Besides,
songorine stimulated  the  mitotic  activity  and  differentiation
of  mesenchymal  progenitor  cells  through activating  the
JAK/STAT signaling pathway [126]. Aconite alkaloids directly
stimulated  the  growth of  fibroblasts,  which might  contribute
to reparative regeneration of the plane dorsal skin [127]. Acon-
itum alkaloids  also  showed strong  binding  capacity  to  metal
ions and used as effective antioxidants [128, 129]. 

Toxicology of Aconitum Alkaloids

In  addition  to  therapeutic  activities, Aconitum alkaloids
have subsantial  cardiotoxicity,  neurotoxicity  and  liver  tox-
icity  at  high  doses  or  for  long-term  use.  A  large  number  of
studies  indicated  that Aconitum diterpenoid alkaloids  pos-
sibly caused disordered ion channels  and DNA damage,  res-
ulting  in mitochondrial-induced  cardiomyocyte  apopto-
sis [130-132]. Aconitine, one of the most bioactive component of
Aconitum alkaloids,  remarkably  aggravated  Ca2+ overload  to
induce  arrhythmia  and  trigger  apoptosis via the  p38  MAPK
signaling  pathway  in  rat  ventricular  myocytes [133],  and in-
duced cardiotoxicity in zebrafish embryos [134]. Aconitine also

Continued        
Component/Dose/Duration Cell type/Animal model Effects Mechanisms Ref.

Higenamine 5, 10 and 15 mg·kg−1

for 1, 3, 7, 14, 28 and 42 d
A murine model of
spinal cord injury

Promote locomotor
function after spinal cord
injury

Increase the expression of IL-4 and IL-
10, promote M2 macrophage
activation and reduce Hmgb1
expression dependent on HO-1
induction

[100]

Aconitine 25 and 75 μg·kg−1 for
9 weeks

Pristine-induced
systemic lupus
erythematosus in mice

Improve the pathological
damage of systemic
lupus erythematosus

Decrease the blood leukocyte counts
and the level of anti-dsDNA antibody
in serum, ameliorate renal
histopathologic damage, reduce IgG
deposit in the glomerular and decrease
the levels of PGE2, IL-17a and IL-6

[101]
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Table 4    Anti-cancer effects of Aconitum alkaloids

Component/Dose/Duration Cell type/Animal model Effects Mechanisms Ref.
14-Benzoylaconine-8-
palmitate IC50 11.9,
27.6,and 31.8 μmol·L−1

for 72 h

MCF-7, HepG2 and H460 cell
lines

Anti-tumor
Inhibit the proliferation of cancer
cells

[102]

Sinchiangensine A,
lipodeoxyaconitine

HL-60. A-549, SMCC-7721,
MCF-7 and SW480 cell lines

Anti-tumor
Inhibit the proliferation of cancer
cells

[103]

Aconitum alkaloids
CT26. SW480, HeLa, SkMel25
and SkMel28 cell lines

Anti-tumor
Inhibit the proliferation of cancer
cells

[104]

Navicularine B IC50 13.50,
18.52, 17.22, 11.18
and16.36 μmol·L−1,
respectively

HL-60, SMMC-7721, A-549,
MCF-7 and SW480 cell lines

Anti-tumor
Inhibit the proliferation of cancer
cells

[105]

Lipojesaconitine IC50 6 to
7.3 μmol·L−1 for 72 h

A549, MDA-MB-231, MCF-7,
KB and KB-VIN cell lines

Anti-tumor activities
except a
multidirectional-
resistant subline

Inhibit the proliferation of cancer
cells through possibly being
exported by P-glycoprotein

[106]

Delelatine IC50 4.36
μmol·L−1 for 72 h

P388 cell line Anti-tumor
Inhibit the proliferation of cancer
cells

[107]

Taipeinine A 7.5, 15 and
30 μmol·L−1 for 24, 48
and 72 h

HepG2 cell line
Anti-tumor via
apoptosis

Inhibit proliferation and
invasiveness, block the cell cycle
at the G1/S phase and up-regulate
the expression of Bax and caspase-
3 protein anddown-regulate the
expression of Bcl-2 and CCND1
protein

[108]

Aconitum szechenyianum
Gay alkaloids 100, 200,
400, and 800 μg·mL−1 for
24 h

HepG2, HeLa and A549 cell lines

Anti-tumor through the
p38-MAPK, death
receptor-, mitochondria-
and caspase-dependent
adoptive pathways

Upregulate TNF-R1 and DR5
through activation of p38 MAPK,
upregulate p53,
and phosphorylate p53 and Bax,
Down-regulate Bcl-2 and activate
caspase 3/8/9

[109]

Aconitine, hypaconitine,
mesaconitne
andoxonitinefor 72 h

HepG2 cell line Anti-tumor
Inhibit the proliferation of cancer
cells

[110]

Aconitine 25 and 50
μg·mL−1 for 72 h

HepG2, Huh7 and L02 cell lines
Inhibit the proliferation
of hepatocellular
carcinoma

Release of cytochrome c from the
mitochondria, activate apoptosis,
increase the cleavage of caspases
3/7 and Bax protein level and
decrease Bcl-2 level

[111]

Aconitine 15, 30, and 60
μmol·L−1 for 48 h (cell);
and 50, and 100 mg·kg−1

for 28 d (mice)

Miapaca-2, PANC-1 cells,
Miapaca-2 cells and, a xenograft
mouse model

Induce apoptosis in
human pancreatic
cancer

Up-regulate the expression of pro-
apoptotic factors Bax, cl-caspase-
3, cl-caspase-9, and cleaved
PARP1 and decrease anti-
apoptotic protein Bcl-2 and NF-
κB expression

[112]

Hypaconitine 2, 4 and
8 μmol·L−1 for 48 h

TGF-β1-induced A549 cells
Inhibit the adhesion,
migration and invasion
abilities of lung cancer

Inhibit TGF-β1-induced u-
pregulation of N-cadherin, NF-κB
and inhibit TGF-β1-induced
adhesion, migration and invasion
abilities

[113]

Amide alkaloids from
Aconitum taipeicum;
andditerpenoid alkaloids
from Aconitum taipeicum

HL60 and K562 cell lines Anti-leukaemia
Inhibit the proliferation of cancer
cells

[114-115]
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up-regulated a series of pro-apoptotic proteins including P53,
BAX, and  caspase-3  but down-regulated  anti-apoptotic  pro-
teins  Bcl-2  and  TnT,  which  induced  cardiotoxicity  in  rat
myocardial  cells [133, 134].  Aconitine  induced  cardiomyocyte
damage via the mitochondria-mediated  apoptosis  path-
way [135] and  mitigated  BNIP3-dependent  mitophagy [136].
Moreover,  aconitine  blocked  HERG  and  Kvl.5  potassium
channels to induce arrhythmias [137]. Aconitine and mesaconit-
ine  induced  cardiotoxicity  and  apoptosis,  and  influenced  the
expression  of  cardiovascular  relative  genes  including  Tbx5,
Gata4,  and  Nkx2.5  in  embryonic  zebrafish [138].  As  another
toxic alkaloid, hypaconitine induced cardiotoxicity through inhibi-
ting  the  KCNH2  (hERG)  potassium  channels  in  conscious
dogs [139].

Notably, clinical reports also confirmed that improper in-
take  of  aconite  alkaloids  might  cause  severe  cardiotoxicity.
Aconitum herbs with  poor  quality  such  as  incompletely  pro-
cessing, poor  quality  of  prescription  such as  overdose,  inad-
equate boiling or dispensary errors [140, 141] and ‘hidden’ acon-
ite poisoning which refers to the toxicity caused by the con-
taminants  in  other  dispensed  herbs  are  the  main  reasons  for
aconite  poisoning [142].  Patients  with  aconite  poisoning  often
showed cardiotoxicity such as bidirectional ventricular tachy-
cardia [143] and  ventricular  dysrhythmias [144], as  well  as  pro-
longed hypotension and sinus bradycardia [145]. Acute aconite
poisoning  also  induced  myocardial  infarction  with  elevated
cardiac  enzymes  and  chest  tightness [146],  and  even  caused
death [147].

In  addtion  to cardiotoxicity, Aconitum alkaloids  also
caused hepatoxicity  and  neurotoxicity,  and aconitine  pro-
moted  liver  autophagy via  the  PI3K/Akt/mTOR  signaling
pathway  in  mice [148]. Aconitine,  mesaconitine  and  hypacon-
tine  possibly  penetrated  the  blood-brain  barrier  (BBB) via a
proton-coupled organic cation antiporter and stimulated dyn-
orphin A expression to cause anti-hypersensitivity [13],  which
partly  revealed  the  underlying  mechanism  of  their  severe
neurotoxicity [149]. 

Pharmacokinetic Studies of Aconitum Alkaloids

Currently,  the  pharmacokinetic  characteristics  of Acon-
itum alkaloids are extensively investigated from the perspect-
ive of absorption, distribution and metabolism. 

Absorption
Efflux transporters,  such  as  P-glycoprotein  (P-gp),  mul-

tidrug  resistance-associated  protein  2  (MRP2),  and  breast
cancer resistance protein (BCRP), play a major role in regu-
lating  the  absorption  of Aconitum alkaloids  in  the  intesti-
ne [150]. Aconitine was rapidly eliminated with a short half-life
(i.v., 80.98 ± 6.40 min), and its total oral bioavailability was
only  8.23% ±  2.5% in  rat  plasma [151]. Further  studies  con-
firmed that P-gp was involved in poor intestinal absorption of
aconitine, resulting in reduced toxicity [30,152-154]. In a pharma-
cokinetics  study  using  urine  and  fecal  samples  of  SD  rats,
87.71% of  mesaconine  was  excreted  without  changes  after
oral  administration.  The  oral  bioavailability  of  mesaconine

was  only  14.9%,  which  may  be  related  to  its  low  intestinal
permeability due to lack of lipophilicity or the inhibitory ef-
fect of P-gp [154, 155]. Moreover, the bioavailability of hypacon-
itine  was  also  extremely  low  due  to  inhibition  of  P-gp [154].
After oral  administration, benzoylmesaconine,  benzoylacon-
ine and benzoylhyaconine achieved the maximal plasma con-
centrations  at  0.222,  0.306,  and  0.222  h,  respectively  and
their bioavailability was  also  very  low  due  to  the  inhibitory
effect  of  P-gp [30,156]. In  addition,  the  pharmacokinetics  stud-
ies  of  urine  and  plasma  samples  from  healthy  subjects
showed that 94% of higenamine was excreted from the body
after  administration  within  30  min  (approximately  four half-
lives) [157]. However, compared with aconitine and benzoylac-
onine, aconine did not significantly increase the expression of
P-gp  in  LS174T  and  caco-2  cells [158],  and  its  transport  was
not significantly differet in the presence of P-gp inhibitor, im-
plying that aconine might be absorbed through passive diffu-
sion [30].  Additionally, Aconitum alkaloids significantly  in-
creased  the  protein  and  mRNA  levels  of  MRP2  and  BCRP,
which contributed  to  the  safe  application  of Aconitum alkal-
oids [12, 150, 159]. 

Distribution
Aconitum alkaloids  were  widely  distributed  in  the  body

after oral administration. The amounts of toxic alkaloids were
significantly  higher  in  the  liver  and  kidneys,  and  relatively
lower in the heart  and blood, with only trace amounts in the
brain due to the action of the blood-brain barrier [160-162].  The
distribution data are useful to elucidate the pharmacokinetics
process of Aconitum alkaloids in the body. 

Metabolism
CYPs  are  abundant  in  the  liver,  kidneys,  lungs  and

gastrointestinal  tract,  which are  responsible  for  metabolizing
exogenous and  endogenous  compounds  through  hydroxyla-
tion  or  oxidation [163]. As  expected,  CYPs are  of  great  signi-
ficance  to  the  metabolism  of Aconitum alkaloids,  which
can transform toxic compounds into more soluble derivatives,
suitable for  excretion  from  the  body,  thereby  greatly  redu-
cing toxicity [164, 165]. Aconitum alkaloids are mainly metabol-
ized  by  CYP  3A4/5,  and  slightly metabolized  by  CYP  2C8,
2C9,  and  2D6 [166-168].  Further  research  found  that  the  main
metabolic pathways of DDAs in the body were demethylation-
dehydrogenation and hydroxylation,  which were more likely
to occur in human liver microsome (HLM) and intestine mi-
crosome (HIM) incubations, while MDAs were mainly meta-
bolized by  demethylation-dehydrogenation  in  HIM  incuba-
tion [164, 165]. Aconitine  was  transformed into  at  least  6  meta-
bolites  through O-demethylation  and N-demethylation  in  rat
liver  microsomal  incubations [31]. These  results  may  contrib-
ute to the research of Aconitum alkaloid poisoning and meta-
bolic detoxification. 

Conclusions and Future Perspectives

Aconitum alkaloids have been widely used as heart medi-
cine  or  analgesic  agents for  the  treatment  of  coronary  heart
disease, chronic heart failure, rheumatoid arthritis and neuro-
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pathic pain [98, 169-171]. This review summarizes the pharmaco-
logical and toxicological effects and related molecular mech-
anisms  of Aconitum alkaloids  in  the  past  twenty years,  with
the schema presented in Fig. 2. Aconitum alkaloids exert sig-
nificant  protective  effects  on  the  cardiovascular  system,
nervous  system,  and  immune  system  as  well  as  anti-cancer
activity.  However,  due  to  a  narrow  therapeutic  window,
Aconitum alkaloids are easily to trigger strong cardiotoxicity,
neurotoxicity  and  liver  toxicity,  which  restrict  its  practical
use.  Therefore,  the  processing methods  of Aconitum such as
decoction  are  commonly  used  to  reduce  toxicity,  which  is
also used in combination with dried ginger, licorice and gin-
seng to  form  traditional  Chinese  medicine  compound  pre-
scriptions,  such  as  Sini  decoction  and Shenfu  decoction  to
achieve  decreasing  toxic and  synergic  effects [29, 172].
However,  there  are  still  some cases  concerning poisoning in
clinical  practice.  Therefore,  it  is  of  great  significance  to
standardize Aconitum alkaloids in  medicinal  materials.  Al-
though Aconitum alkaloids are  characterisized  by poor  ab-
sorption, rapid excretion and low bioavailability in vivo, they
can still show significant pharmacological activity. Therefore,
further exploration of the molecular mechanism of action and
toxicological  mechanism  of Aconitum alkaloids in  vivo will
be helpful  to  ensure  their  safety  application,  which  may  be-
come a research hotspot for Aconitum plants.  
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oids;  MRP2:  multidrug  resistance-associated  protein;  ox-
LDL: oxidized low-density lipoprotein;  PA: processed acon-
ite root; PARP1: poly ADP-ribose polymerase 1; P-gp: P-gly-
coprotein; PT:  prothrombin  time;  RAE:  Radix  Aconiti  Lat-
eralis Preparata extract; TGF-β1: transforming growth factor-
β1; VMH: ventromedial hypothalamic.
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